
v.158 - 07/12/17 Introduction To Programming With MathPiper 1/136

Introduction To
Programming With

MathPiper And
MathPiperIDE

by Ted Kosan

Copyright © 2017 by Ted Kosan

 This work is licensed under the Creative Commons
Attribution-ShareAlike 3.0 License. To view a copy of

this license, visit
http://creativecommons.org/licenses/by-sa/3.0/

v.158 - 07/12/17 Introduction To Programming With MathPiper 2/136

Table of Contents
1 Preface...8

1.1 Dedication..8
1.2 Website And Support Email List..8
1.3 Recommended Weekly Sequence When Teaching A Class With This Book. .8

2 Introduction..9

2.1 What Is A Mathematics Computing Environment?.......................................9
2.2 What Is MathPiperIDE?...10
2.3 What Inspired The Creation Of MathPiperIDE?..11

3 Downloading, Installing, And Executing MathPiperIDE....................................12

3.1 MathPiperIDE's Directory Structure...12

4 The Graphical User Interface...13

4.1 Buffers And Text Areas..13
4.2 The Gutter...13
4.3 Menus..13

4.3.1 File..14
4.3.2 Edit..14
4.3.3 Search...14
4.3.4 Markers, Folding, and View..15
4.3.5 Utilities...15
4.3.6 Macros..15
4.3.7 Plugins..15
4.3.8 Help...15

4.4 The Toolbar..15
4.4.1 Undo And Redo...16

5 Using MathPiperIDE As A Programmer's Text Editor.......................................17

5.1 Creating, Opening, Saving, And Closing Text Files.....................................17
5.2 Editing Files...17
5.3 File Modes...18
5.4 Learning How To Type Properly Is An Excellent Investment Of Your Time18
5.5 Exercises..18

5.5.1 Exercise 1...18

6 MathPiper: A Computer Algebra System For Beginners...................................19

6.1 Numeric Vs. Symbolic Computations..19
6.2 Using The MathPiper Console As A Numeric (Scientific) Calculator..........20

6.2.1 Using Procedures..22
6.2.1.1 The Sqrt() Square Root Procedure..22
6.2.1.2 The Even?() Procedure...23

6.2.2 Accessing Previous Input And Results..23

v.158 - 07/12/17 Introduction To Programming With MathPiper 3/136

6.3 Saving And Restoring A Console Session..23
6.3.1 Syntax Errors..24

6.4 Using The MathPiper Console As A Symbolic Calculator...........................24
6.4.1 Variables And The Variable State...25

6.4.1.1 The Global Variable State..26
6.4.1.2 Evaluating An Unassigned Variable Throws An Exception............27
6.4.1.3 Constants...27
6.4.1.4 Calculating With Constants..29
6.4.1.5 Variable And Constant Names Are Case Sensitive........................30
6.4.1.6 Using More Than One Variable..30

6.5 Exercises..31
6.5.1 Exercise 1...31
6.5.2 Exercise 2...31
6.5.3 Exercise 3...31
6.5.4 Exercise 4...32

7 The MathPiper Documentation Plugin...33

7.1 Procedure List...33
7.2 Mini Web Browser Interface..33
7.3 Exercises..34

7.3.1 Exercise 1...34
7.3.2 Exercise 2...34

8 MathPiperIDE Worksheet Files..35

8.1 Code Folds And Source Code..35
8.1.1 The title Attribute...36

8.2 Automatically Inserting Folds & Removing Unpreserved Folds..................36
8.3 Placing Text Outside Of A Fold..37
8.4 Rectangular Selection Mode And Text Area Splitting.................................37

8.4.1 Rectangular Selection Mode...37
8.4.2 Text area splitting...38
8.4.3 Exercises...38

8.4.3.1 Exercise 1...39
8.4.3.2 Exercise 2...39
8.4.3.3 Exercise 3...39
8.4.3.4 Exercise 4...39

9 MathPiper Programming Fundamentals..40

9.1 Values, Literals, And Expressions..40
9.2 Operators...40
9.3 Operator Precedence...41
9.4 Changing The Order Of Operations In An Expression................................44
9.5 Procedures & Procedure Names...45
9.6 Procedures That Produce Side Effects..45

v.158 - 07/12/17 Introduction To Programming With MathPiper 4/136

9.6.1 Printing Related Procedures: Echo(), Write(), And Newline()..............46
9.6.1.1 The Echo() Procedure..46
9.6.1.2 Echo Procedures Are Useful For "Debugging" Programs..............48
9.6.1.3 Write()..48
9.6.1.4 NewLine()...49

9.7 Expressions Are Separated By Semicolons...49
9.7.1 Placing More Than One Expression On A Line In A Fold.....................50
9.7.2 Placing Consecutive Expressions Into A Code Sequence.....................51

9.7.2.1 Automatic Bracket, Parentheses, And Brace Match Indicating.....52
9.8 Strings...53

9.8.1 The MathPiper Console and MathPiper Folds Can Access The Same
Variables..53
9.8.2 Using Strings To Make Echo's Output Easier To Read.........................53

9.8.2.1 Combining Strings With The + Operator.......................................54
9.8.2.2 WriteString()..54
9.8.2.3 Nl()...55
9.8.2.4 Space()...55

9.8.3 Accessing The Individual Letters/Characters In A String....................55
9.8.3.1 Indexing Before The Beginning Of A String Or Past The End Of A
String..56

9.9 Comments..56
9.10 How To Tell If MathPiper Has Crashed And What To Do If It Has............58
9.11 Exercises..58

9.11.1 Exercise 1...58
9.11.2 Exercise 2...59
9.11.3 Exercise 3...59
9.11.4 Exercise 4...59
9.11.5 Exercise 5...59
9.11.6 Exercise 6...60

10 Lists..61

10.1 Append!()...62

11 Random Integer Values..63

11.1 Obtaining Random Integers With The RandomInteger() Procedure.........63
11.2 Simulating The Rolling Of Dice...64
11.3 Exercises..65

11.3.1 Exercise 1...65

12 Making Decisions...66

12.1 Relational Operators..66
12.2 Predicate Expressions...69
12.3 Exercises..69

12.3.1 Exercise 1...69

v.158 - 07/12/17 Introduction To Programming With MathPiper 5/136

12.3.2 Exercise 2...70
12.4 Making Decisions With The If() Procedure & Predicate Expressions.......70

12.4.1 One If() Procedure Used With One Else Operator..............................73
12.5 The &?, |?, And !? Boolean Operators...74

12.5.1 The &? "And" Operator...74
12.5.2 The |? "Or" Operator...75
12.5.3 The !? "Not" Operator...76

12.6 Exercises..77
12.6.1 Exercise 1...77
12.6.2 Exercise 2...78
12.6.3 Exercise 3...78

13 The While() And Until() Looping Procedures...79

13.1 The While() Looping Procedure...79
13.1.1 Printing The Integers From 1 to 10..79
13.1.2 Placing The Integers From 1 to 50 In A List.......................................81
13.1.3 Printing The Odd Integers From 1 To 99..81
13.1.4 Placing The Integers From 1 To 100 In Reverse Order Into A List....82

13.2 The Until() Looping Procedure..83
13.2.1 Printing The Integers From 1 to 10..83

13.3 Expressions Inside Of Code Sequences Are Indented...............................84
13.4 Long-Running Loops, Infinite Loops, & Interrupting Execution...............84
13.5 A Program That Simulates Rolling Two Dice 50 Times.............................85
13.6 Exercises..87

13.6.1 Exercise 1...88
13.6.2 Exercise 2...88
13.6.3 Exercise 3...88

14 Predicate Procedures...89

14.1 Finding Prime Numbers With A Loop..90
14.2 Finding The Length Of A String With The Length() Procedure................91
14.3 Converting Numbers To Strings With The ToString() Procedure.............92
14.4 Finding Prime Numbers that End With 7 (And Multi-line Procedure Calls)
...92
14.5 Exercises..94

14.5.1 Exercise 1...94
14.5.2 Exercise 2...94

15 More Applications Of Using While Loops With Lists.......................................95

15.1 Adding 1 To Each Element In A List..95
15.2 Determining If A Number Is In A List...95
15.3 Finding The Sum Of The Integers In A List Using A While Loop..............96
15.4 Exercises..97

15.4.1 Exercise 1...97

v.158 - 07/12/17 Introduction To Programming With MathPiper 6/136

15.4.2 Exercise 2...97
15.4.3 Exercise 3...98

15.5 The ForEach() Looping Procedure..99
15.6 Print All The Values In A List Using A ForEach() procedure.....................99
15.7 Calculate The Sum Of The Numbers In A List Using ForEach()...............99
15.8 The .. Range Operator...100
15.9 Using ForEach() With The Range Operator To Print The Prime Numbers
Between 1 And 100..101

15.9.1 Using ForEach() And The Range Operator To Place The Prime
Numbers Between 1 And 50 Into A List..102
15.9.2 Exercises...103
15.9.3 Exercise 1...104
15.9.4 Exercise 2...104
15.9.5 Exercise 3...104
15.9.6 Exercise 4...104

16 Procedures & Operators That Loop Internally...105

16.1 Procedures & Operators That Loop Internally To Process Lists.............105
16.1.1 TableForm()...105
16.1.2 Contains?()..105
16.1.3 Find()..106
16.1.4 Count()..106
16.1.5 Select()..107
16.1.6 The Nth() Procedure & The [] Operator...107
16.1.7 Concat()..108
16.1.8 Insert(), Delete(), & Replace()..108
16.1.9 Take()..109
16.1.10 Drop()..109
16.1.11 FillList()..110
16.1.12 RemoveDuplicates()..110
16.1.13 Reverse()...111
16.1.14 Partition()..111
16.1.15 BuildList()...112
16.1.16 Sort()...112

16.2 Procedures That Work With Integers..113
16.2.1 RandomIntegerList()...113
16.2.2 Maximum() & Minimum()...113
16.2.3 Quotient() & Modulo()..114
16.2.4 Gcd()...114
16.2.5 Lcm()...115
16.2.6 Sum()...115
16.2.7 Product()...116

16.3 Exercises..116

v.158 - 07/12/17 Introduction To Programming With MathPiper 7/136

16.3.1 Exercise 1...116
16.3.2 Exercise 2...117
16.3.3 Exercise 3...117
16.3.4 Exercise 4...117
16.3.5 Exercise 5...117

17 Nested Loops..118

17.1 Generate All The Combinations That Can Be Entered Into A Two Digit
Wheel Lock Using A Nested Loop...118
17.2 Exercises..119

17.2.1 Exercise 1...120

18 User Defined Procedures...121

18.1 Global Variables, Local Variables, & Local()...123
18.2 Exercises..125

18.2.1 Exercise 1...125
18.2.2 Exercise 2...125

19 Miscellaneous topics..127

19.1 Incrementing And Decrementing Variables With The ++ And -- Operators
...127

19.1.1 Incrementing Variables With The ++ Operator...............................127
19.1.2 Decrementing Variables With The -- Operator.................................128
19.1.3 The For() Looping Procedure..129
19.1.4 The Break() Procedure..130
19.1.5 The Continue() Procedure...130
19.1.6 The Repeat() Looping Procedure..131
19.1.7 The EchoTime() Procedure...133

19.2 Exercises..135
19.2.1 Exercise 1...135
19.2.2 Exercise 2...135
19.2.3 Exercise 3...136
19.2.4 Exercise 4...136
19.2.5 Exercise 5...136

v.158 - 07/12/17 Introduction To Programming With MathPiper 8/136

1 Preface

1.1 Dedication

This book is dedicated to Steve Yegge and his blog entries "Math Every Day"
(http://steve.yegge.googlepages.com/math-every-day) and "Math For
Programmers" (http://steve-yegge.blogspot.com/2006/03/math-for-
programmers.html).

1.2 Website And Support Email List

The website for MathPiper and MathPiperIDE is http://mathpiper.org.

The support email list for this book is called mathpiper-
user@googlegroups.com and you can subscribe to it at
http://groups.google.com/group/mathpiper-user

1.3 Recommended Weekly Sequence When Teaching A Class With This
Book

• Week 1: Sections 1 - 7.

• Week 2: Sections 8 - 9.

• Week 3: Sections 10 - 13.

• Week 4: Sections 14 - 15.

• Week 5: Sections 16 - 19.

• Week 6: Exam

1

2

3
4
5
6

7

8

9
10
11

12
13

14

15

16

17

18

19

http://steve.yegge.googlepages.com/math-every-day
http://groups.google.com/group/mathpiper-user
http://mathpiper.org/
http://steve-yegge.blogspot.com/2006/03/math-for-programmers.html
http://steve-yegge.blogspot.com/2006/03/math-for-programmers.html

v.158 - 07/12/17 Introduction To Programming With MathPiper 9/136

2 Introduction

MathPiperIDE is an open source mathematics computing environment for
performing numeric and symbolic computations (the difference between numeric
and symbolic computations are discussed in a later section). Mathematics
computing environments are complex and it takes a significant amount of time
and effort to become proficient at using one. The amount of power that these
environments make available to a user, however, is well worth the effort needed
to learn one. It will take a beginner a while to become an expert at using
MathPiperIDE, but fortunately one does not need to be a MathPiperIDE expert in
order to begin using it to solve problems.

2.1 What Is A Mathematics Computing Environment?

A Mathematics Computing Environment is a set of computer programs that 1)
automatically execute a wide range of numeric and symbolic mathematics
calculation algorithms and 2) provide a user interface that enables the user to
access these calculation algorithms and manipulate the mathematical objects
they create (An algorithm is a step-by-step sequence of instructions for solving a
problem and we will be learning about algorithms later in the book).

Standard and graphing scientific calculator users interact with these devices
using buttons and a small LCD display. In contrast to this, users interact with
MathPiperIDE using a rich graphical user interface that is driven by a computer
keyboard and mouse. Almost any personal computer can be used to run
MathPiperIDE, including the latest subnotebook computers.

Calculation algorithms exist for many areas of mathematics and new algorithms
are constantly being developed. Software that contains these kind of algorithms
is commonly referred to as "Computer Algebra Systems (CAS)". A significant
number of computer algebra systems have been created since the 1960s and the
following list contains some of the more popular ones:

http://en.wikipedia.org/wiki/Comparison_of_computer_algebra_systems

Some environments are highly specialized and some are general purpose. Some
allow mathematics to be entered and displayed in traditional form (which is what
is found in most math textbooks). Some are able to display traditional form
mathematics but need to have it input as text and some are only able to have
mathematics displayed and entered as text.

As an example of the difference between traditional mathematics form and text
form, here is a formula that is displayed in traditional form:

a=x24hx
3
7

20

21
22
23
24
25
26
27
28
29

30

31
32
33
34
35
36

37
38
39
40
41

42
43
44
45
46

47

48
49
50
51
52

53
54

http://en.wikipedia.org/wiki/Comparison_of_computer_algebra_systems

v.158 - 07/12/17 Introduction To Programming With MathPiper 10/136

and here is the same formula in text form:

a = x^2 + 4*h*x + 3/7

Most computer algebra systems contain a mathematics-oriented programming
language. This allows programs to be developed that have access to the
mathematics algorithms that are included in the system. Some mathematics-
oriented programming languages were created specifically for the system they
work in while others were built on top of an existing programming language.

Some mathematics computing environments are proprietary and need to be
purchased while others are open source and available for free. Both kinds of
systems possess similar core capabilities, but they usually differ in other areas.

Proprietary systems tend to be more polished than open source systems and they
often have graphical user interfaces that make inputting and manipulating
mathematics in traditional form relatively easy. However, proprietary
environments also have drawbacks. One drawback is that there is always a
chance that the company that owns it may go out of business and this may make
the environment unavailable for further use. Another drawback is that users are
unable to enhance a proprietary environment because the environment's source
code (which is discussed in a later section) is not made available to users.

Some open source computer algebra systems do not have graphical user
interfaces, but their user interfaces are adequate for most purposes and the
environment's source code will always be available to whomever wants it. This
means that people can use the environment for as long as they desire and they
can also enhance it.

2.2 What Is MathPiperIDE?

MathPiperIDE is an open source Mathematics Computing Environment that has
been designed to help people teach themselves the STEM disciplines (Science,
Technology, Engineering, and Mathematics) in an efficient and holistic way. It
inputs mathematics in textual form and displays it in either textual form or
traditional form.

MathPiperIDE uses MathPiper as its default computer algebra system, BeanShell
as its main scripting language, jEdit as its development environment, and Java as
its overall implementation language. One way to determine a person's
MathPiperIDE expertise is by their knowledge of these components. (see Table 1)

55

56

57
58
59
60
61

62
63
64

65
66
67
68
69
70
71
72

73
74
75
76
77

78

79
80
81
82
83

84
85
86
87

http://en.wikipedia.org/wiki/STEM_fields

v.158 - 07/12/17 Introduction To Programming With MathPiper 11/136

Level Knowledge

MathPiperIDE
Developer

Knows Java, BeanShell, and JEdit at an advanced level. Is
able to develop MathPiperIDE plugins.

MathPiperIDE
Customizer

Knows Java, BeanShell, and JEdit at an intermediate level.
Is able to develop MathPiperIDE macros.

MathPiperIDE
Expert

Knows MathPiper at an advanced level and is skilled at
using most aspects of the MathPiperIDE application.

MathPiperIDE
Novice

Knows MathPiper at an intermediate level, but has only
used MathPiperIDE for a short while.

MathPiperIDE
Beginner

Does not know MathPiper but has been exposed to at least
one programming language.

Programming
Beginner

Does not know how a computer works and has never
programmed before but knows how to use a word
processor.

Table 1: MathPiperIDE user experience levels.

This book is for MathPiperIDE and programming beginners. This book will teach
you enough programming to begin solving problems with MathPiperIDE using
the MathPiper programming language. It will help you to become a
MathPiperIDE Novice, but you will need to learn MathPiper from books that are
dedicated to it before you can become a MathPiperIDE Expert.

The MathPiperIDE project website (http://mathpiper.org) contains more
information about MathPiperIDE along with other MathPiperIDE resources.

2.3 What Inspired The Creation Of MathPiperIDE?

One of the main inspirations for MathPiper is Steve Yegge's thoughts on learning
mathematics:

1) Math is a lot easier to pick up after you know how to program. In fact, if
you're a halfway decent programmer, you'll find it's almost a snap.

2) The right way to learn math is breadth-first, not depth-first. You need to
survey the space, learn the names of things, figure out what's what.

http://steve-yegge.blogspot.com/2006/03/math-for-programmers.html

88
89
90
91
92

93
94

95

96
97

98
99

100
101

102

http://steve-yegge.blogspot.com/2006/03/math-for-programmers.html
http://mathpiper.org/

v.158 - 07/12/17 Introduction To Programming With MathPiper 12/136

3 Downloading, Installing, And Executing MathPiperIDE

Instructions for downloading and installing MathPiperIDE are on the download
page of the MathPiper website (http://mathpiper.org).

3.1 MathPiperIDE's Directory Structure

The top level of MathPiperIDE's directory structure is shown in Illustration 1:

The following is a brief description this top level directory structure:

doc - Contains MathPiperIDE's documentation files.

examples - Contains various example programs, some of which are pre-opened
when MathPiperIDE is first executed.

jars - Holds plugins, code libraries, and support scripts.

macros - Contains various scripts that can be executed by the user.

modes - Contains files that tell MathPiperIDE how to do syntax highlighting for
various file types.

settings - Contains the application's main settings files.

startup - Contains startup scripts that are executed each time MathPiperIDE
launches.

jedit.jar - Holds the core jEdit application that MathPiperIDE builds upon.

unix_run.sh - The script used to execute MathPiperIDE on Unix systems.

win_run.bat - The batch file used to execute MathPiperIDE on Windows
systems.

Illustration 1: MathPiperIDE's Directory Structure

doc examples jars macros modes settings startup jedit.jar unix_run.sh win_run.bat

mathpiperide

103

104
105

106

107

108

109

110
111

112

113

114
115

116

117
118

119

120

121
122

http://mathpiper.org/

v.158 - 07/12/17 Introduction To Programming With MathPiper 13/136

4 The Graphical User Interface

MathPiperIDE is built on top of jEdit (http://jedit.org) so it has the "heart" of a
programmer's text editor. Programmer's text editors are similar to standard text
editors (like NotePad and WordPad) and word processors (like MS Word and
OpenOffice) in a number of ways so getting started with MathPiperIDE should be
relatively easy for anyone who has used a text editor or a word processor.
However, programmer's text editors are more challenging to use than a standard
text editor or a word processor because programmer's text editors have
capabilities that are far more advanced than these two types of applications.

Most software is developed with a programmer's text editor (or environments
that contain one) and so learning how to use a programmer's text editor is one of
the many skills that MathPiperIDE provides that can be used in other areas. The
MathPiperIDE series of books are designed so that these capabilities are
revealed to the reader over time.

In the following sections, the main parts of MathPiperIDE's graphical user
interface are briefly covered. Some of these parts are covered in more depth
later in the book and some are covered in other books.

As you read through the following sections, I encourage you to explore
each part of MathPiperIDE that is being discussed using your own copy
of MathPiperIDE.

4.1 Buffers And Text Areas

In MathPiperIDE, open files are called buffers and they are viewed through one
or more text areas. Each text area has a tab at its upper-left corner that
displays the name of the buffer it is working on along with an indicator that
shows whether the buffer has been saved or not. The user is able to select a text
area by clicking its tab and double clicking on the tab will close the text area.
Tabs can also be rearranged by dragging them to a new position with the mouse.

4.2 The Gutter

The gutter is the vertical gray area that is on the left side of the main window. It
can contain line numbers, buffer manipulation controls, and context-dependent
information about the text in the buffer.

4.3 Menus

The main menu bar is at the top of the application and it provides access to a
significant portion of MathPiperIDE's capabilities. The commands (or actions)
in these menus all exist separately from the menus themselves and they can be
executed in alternate ways (such as keyboard shortcuts). The menu items (and

123

124
125
126
127
128
129
130
131

132
133
134
135
136

137
138
139

140
141
142

143

144
145
146
147
148
149

150

151
152
153

154

155
156
157
158

http://jedit.org/

v.158 - 07/12/17 Introduction To Programming With MathPiper 14/136

even the menus themselves) can all be customized, but the following sections
describe the default configuration.

4.3.1 File

The File menu contains actions that are typically found in normal text editors and
word processors. The actions to create new files, save files, and open existing
files are all present along with variations on these actions.

Actions for opening recent files, configuring the page setup, and printing are
also present.

4.3.2 Edit

The Edit menu also contains actions that are typically found in normal text
editors and word processors (such as Undo, Redo, Cut, Copy, and Paste).
However, there are also a number of more sophisticated actions available that
are of use to programmers. For beginners, though, the typical actions will be
sufficient for most editing needs.

4.3.3 Search

The actions in the Search menu are used heavily, even by beginners. A good way
to get your mind around the search actions is to open the Search dialog window
by selecting the Find... action, which is the first actions in the Search menu. A
Search And Replace dialog window will then appear that contains access to
most of the search actions.

At the top of this dialog window is a text area labeled Search for that allows the
user to enter text they would like to find. Immediately below it is a text area
labeled Replace with that is for entering optional text that can be used to
replace text that is found during a search.

The column of radio buttons labeled Search in allows the user to search in a
Selection of text (which is text that has been highlighted), the Current Buffer
(which is the one that is currently active), All buffers (which means all opened
files), or a whole Directory of files. The default is for a search to be conducted
in the current buffer and this is the mode that is used most often.

The column of check boxes labeled Settings allows the user to either Keep or
hide the Search dialog window after a search is performed, Ignore the case
of searched text, use an advanced search technique called a Regular
expression search (which is covered in another book), and to perform a
HyperSearch (which collects multiple search results in a text area).

The Find button performs a normal find operation. Replace & Find will replace
the previously found text with the contents of the Replace with text area and
perform another find operation. Replace All will find all occurrences of the

159
160

161

162
163
164

165
166

167

168
169
170
171
172

173

174
175
176
177
178

179
180
181
182

183
184
185
186
187

188
189
190
191
192

193
194
195

v.158 - 07/12/17 Introduction To Programming With MathPiper 15/136

contents of the Search for text area and replace them with the contents of the
Replace with text area.

4.3.4 Markers, Folding, and View

These are advanced menus and they are described in later sections.

4.3.5 Utilities

The utilities menu contains a significant number of actions, some that are useful
to beginners and others that are meant for experts. The two actions that are
most useful to beginners are the Buffer Options actions and the Global
Options actions. The Buffer Options actions allows the currently selected
buffer to be customized and the Global Options actions brings up a rich dialog
window that allows numerous aspects of the MathPiperIDE application to be
configured.

Feel free to explore these two actions in order to learn more about what they do.

4.3.6 Macros

This is an advanced menu and it is described in a later sections.

4.3.7 Plugins

Plugins are component-like pieces of software that are designed to provide an
application with extended capabilities and they are similar in concept to physical
world components. The tabs on the right side of the application that are labeled
"JFreeChart”, "MathPiper", "MathPiperDocs", etc. are all plugins and they can be
opened and closed by clicking on their tabs. Feel free to close any of these
plugins, which may be opened if you are not currently using them.
MathPiperIDE pPlugins are covered in more depth in a later section.

4.3.8 Help

The most important action in the Help menu is the MathPiperIDE Help action.
This action brings up a dialog window with contains documentation for the core
MathPiperIDE application along with documentation for each installed plugin.

4.4 The Toolbar

The Toolbar is located just beneath the menus near the top of the main window
and it contains a number of icon-based buttons. These buttons allow the user to
access the same actions that are accessible through the menus just by clicking
on them. There is not room on the toolbar for all the actions in the menus to be

196
197

198

199

200

201
202
203
204
205
206
207

208

209

210

211

212
213
214
215
216
217
218

219

220
221
222

223

224
225
226
227

v.158 - 07/12/17 Introduction To Programming With MathPiper 16/136

displayed, but the most common actions are present. The user also has the
option of customizing the toolbar by using the Utilities->Global Options->Tool
Bar dialog.

4.4.1 Undo And Redo

The Undo button on the toolbar is able to undo any text was entered since the
current session of MathPiperIDE was launched. This is very handy for undoing
mistakes or getting back text that was deleted. The Redo button can be used if
you have selected Undo too many times and you need to "undo" one ore more
Undo operations.

228
229
230

231

232
233
234
235
236

v.158 - 07/12/17 Introduction To Programming With MathPiper 17/136

5 Using MathPiperIDE As A Programmer's Text Editor

We have covered some of MathPiperIDE's mathematics capabilities and this
section discusses some of its programming capabilities. As indicated in a
previous section, MathPiperIDE is built on top of a programmer's text editor but
what wasn't discussed was what an amazing and powerful tool a programmer's
text editor is.

Computer programmers are among the most intelligent and productive people in
the world and most of their work is done using a programmer's text editor (or
something similar to one). Programmers have designed programmer's text
editors to be super-tools that can help them maximize their personal productivity
and these tools have all kinds of capabilities that most people would not even
suspect they contained.

Even though this book only covers a small part of the editing capabilities that
MathPiperIDE has, what is covered will enable the user to begin writing useful
programs.

5.1 Creating, Opening, Saving, And Closing Text Files

A good way to begin learning how to use MathPiperIDE's text editing capabilities
is by creating, opening, and saving text files. A text file can be created either by
selecting File->New from the menu bar or by selecting the icon for this
operation on the tool bar. When a new file is created, an empty text area is
created for it along with a new tab named Untitled.

The file can be saved by selecting File->Save from the menu bar or by selecting
the Save icon in the tool bar. The first time a file is saved, MathPiperIDE will ask
the user what it should be named and it will also provide a file system navigation
window to determine where it should be placed. After the file has been named
and saved, its name will be shown in the tab that previously displayed Untitled.

A file can be closed by selecting File->Close from the menu bar and it can be
opened by selecting File->Open.

5.2 Editing Files

If you know how to use a word processor, then it should be fairly easy for you to
learn how to use MathPiperIDE as a text editor. Text can be selected by
dragging the mouse pointer across it and it can be cut or copied by using actions
in the Edit menu (or by using <Ctrl>x and <Ctrl>c). Pasting text can be done
using the Edit menu actions or by pressing <Ctrl>v.

237

238
239
240
241
242

243
244
245
246
247
248

249
250
251

252

253
254
255
256
257

258
259
260
261
262

263
264

265

266
267
268
269
270

v.158 - 07/12/17 Introduction To Programming With MathPiper 18/136

5.3 File Modes

Text file names are suppose to have a file extension that indicates what type of
file it is. For example, test.txt is a generic text file, test.bat is a Windows batch
file, and test.sh is a Unix/Linux shell script (unfortunately, Windows is usually
configured to hide file extensions, but viewing a file's properties by right-clicking
on it will show this information.).

MathPiperIDE uses a file's extension type to place its text area into a customized
mode that highlights various parts of its contents. For example, MathPiperIDE
worksheet files have a .mpws extension and MathPiperIDE knows what colors to
highlight the various parts of a .mpws file in.

5.4 Learning How To Type Properly Is An Excellent Investment Of Your
Time

This is a good place in the document to mention that learning how to type
properly is an investment that will pay back dividends throughout your whole
life. Almost any work you do on a computer (including programming) will be
done much faster and with less errors if you know how to type properly. Here is
what Steve Yegge has to say about this subject:

"If you are a programmer, or an IT professional working with computers in any
capacity, you need to learn to type! I don't know how to put it any more clearly
than that."

A good way to learn how to type is to locate a free "learn how to type" program
on the web and use it.

5.5 Exercises

5.5.1 Exercise 1
Create a text file called "my_text_file.txt" and place a few sentences in
it. Save the text file somewhere on your hard drive then close it. Now,
open the text file again using File->Open and verify that what you typed is
still in the file.

271

272
273
274
275
276

277
278
279
280

281
282

283
284
285
286
287

288
289
290

291
292

293

294

295
296
297
298

v.158 - 07/12/17 Introduction To Programming With MathPiper 19/136

6 MathPiper: A Computer Algebra System For Beginners

Computer algebra systems are extremely powerful and very useful for solving
STEM-related problems. In fact, one of the reasons for creating MathPiperIDE
was to provide a vehicle for delivering a computer algebra system to as many
people as possible. If you like using a scientific calculator, you should love using
a computer algebra system!

At this point you may be asking yourself "if computer algebra systems are so
wonderful, why aren't more people using them?" One reason is that most
computer algebra systems are complex and difficult to learn. Another reason is
that proprietary systems are very expensive and therefore beyond the reach of
most people. Luckily, there are some open source computer algebra systems
that are powerful enough to keep most people engaged for years, and yet simple
enough that even a beginner can start using them. MathPiper, which is based on
a CAS called Yacas, is one of these simpler computer algebra systems and it is
the computer algebra system that is included by default with MathPiperIDE.

A significant part of this book is devoted to learning MathPiper and a good way
to start is by discussing the difference between numeric and symbolic
computations.

6.1 Numeric Vs. Symbolic Computations

A Computer Algebra System (CAS) is software that is capable of performing both
numeric and symbolic computations. Numeric computations are performed
exclusively with numerals and these are the type of computations that are
performed by typical hand-held calculators.

Symbolic computations (which also called algebraic computations) relate "...to
the use of machines, such as computers, to manipulate mathematical equations
and expressions in symbolic form, as opposed to manipulating the
approximations of specific numerical quantities represented by those symbols."
(http://en.wikipedia.org/wiki/Symbolic_mathematics).

Since most people who read this document will probably be familiar with
performing numeric calculations as done on a scientific calculator, the next
section shows how to use MathPiper as a scientific calculator. The section after
that then shows how to use MathPiper as a symbolic calculator. Both sections
use the console interface to MathPiper. In MathPiperIDE, a console interface to
any plugin or application is a text-only shell or command line interface to it.
This means that you type on the keyboard to send information to the console and
it prints text to send you information.

299

300
301
302
303
304

305
306
307
308
309
310
311
312
313

314
315
316

317

318
319
320
321

322
323
324
325
326

327
328
329
330
331
332
333
334

http://en.wikipedia.org/wiki/Symbolic_mathematics

v.158 - 07/12/17 Introduction To Programming With MathPiper 20/136

6.2 Using The MathPiper Console As A Numeric (Scientific) Calculator

Open the MathPiperConsole plugin by selecting the MathPiperConsole tab in
the lower left part of the MathPiperIDE application. The MathPiper console
interface is a text area that is inside this plugin. The size of the console text area
can be changed by dragging on the dotted lines that are at the top side and right
side of the console window.

When the MathPiper console is first launched, it prints a welcome message and
then provides In> as an input prompt:

MathPiper version "xxx".

In>

Click to the right of the prompt in order to place the cursor there then type 2+2
followed by <enter> (or <return> on a Macintosh):

In> 2+2
Result: 4

In>

When <enter> was pressed, 2 + 2 was read into MathPiper for evaluation and
Result: was printed followed by the result 4. The numeral 4 is the value that
was returned by evaluating 2 + 2. Another input prompt was then displayed so
that further input could be entered. This input, evaluation, output process
will continue as long as the console is running and it is sometimes called a Read,
Eval, Print Loop or REPL. In further examples, the last In> prompt will not be
shown to save space.

Previous input can be automatically entered to the right of an In> prompt by
placing the cursor to the right of the prompt, pressing the <ctrl> key, and then
pressing the up and down arrow keys.

In addition to addition, MathPiper can also do subtraction, multiplication,
exponents, and division:

In> 5-2
Result: 3

In> 3*4
Result: 12

In> 2^3
Result: 8

In> 12/6
Result: 2

335

336
337
338
339
340

341
342

343

344

345
346

347
348

349

350
351
352
353
354
355
356

357
358
359

360
361

362
363

364
365

366
367

368
369

v.158 - 07/12/17 Introduction To Programming With MathPiper 21/136

Notice that the multiplication symbol is an asterisk (*), the exponent symbol is a
caret (^), and the division symbol is a forward slash (/). These symbols (along
with addtion (+), subtraction (−), and ones we will talk about later) are called
operators because they tell MathPiper to perform an operation such as addition
or division.

MathPiper can also work with decimal numbers:

In> .5+1.2
Result: 1.7

In> 3.7-2.6
Result: 1.1

In> 2.2*3.9
Result: 8.58

In> 2.2^3
Result: 10.648

In> 1/2
Result: 1/2

In the last example, MathPiper returned the fraction unevaluated. This
sometimes happens due to MathPiper's symbolic nature, but a result in numeric
form can be obtained by using the NM() procedure (which is discussed in the
next section):

In> NM(1/2)
Result: 0.5

As can be seen here, when a result is given in numeric form, it means that it is
given as a decimal number. A numeric result could also be obtained by using a
decimal point either after the 1 or the 2 (or both of them):

In> 1./2
Result: 0.5

In> 1/2.
Result: 0.5

In> 1./2.
Result: 0.5

When one or more decimal numbers are used in a calculation, MathPiper will
usually return a numeric result.

370
371
372
373
374

375

376
377

378
379

380
381

382
383

384
385

386
387
388
389

390
391

392
393
394

395
396

397
398

399
400

401
402

v.158 - 07/12/17 Introduction To Programming With MathPiper 22/136

6.2.1 Using Procedures

NM() is an example of a procedure. A procedure can be thought of as a "black
box" that accepts input, processes the input, and returns a result. Each
procedure has a name and in this case, the name of the procedure is NM, which
stands for "Numeric Mode". To the right of a procedure's name there is always
a set of parentheses, and information that is sent to the procedure is placed
inside of them. The purpose of the NM() procedure is to make sure that the
information that is sent to it is processed numerically instead of symbolically.
Procedures are used by evaluating them, and this happens when <enter> is
pressed. Another name for evaluating a procedure is calling it.

6.2.1.1 The Sqrt() Square Root Procedure

The following example show the NM() procedure being used with the square
root procedure Sqrt():

In> Sqrt(9)
Result: 3

In> Sqrt(8)
Result: Sqrt(8)

In> NM(Sqrt(8))
Result: 2.828427125

Notice that Sqrt(9) returned 3 as expected but Sqrt(8) returned Sqrt(8). We
needed to use the NM() procedure to force the square root procedure to return a
numeric result. The reason that Sqrt(8) does not appear to have done anything
is because computer algebra systems like to work with expressions that are as
exact as possible. In this case the symbolic value Sqrt(8) represents the number
that is the square root of 8 more accurately than any decimal number can.

For example, the following four decimal numbers all represent √(8) , but none of
them represent it more accurately than Sqrt(8) does:

2.828427125

2.82842712474619

2.82842712474619009760337744842

2.8284271247461900976033774484193961571393437507539

Whenever MathPiper returns a symbolic result and a numeric result is desired,
simply use the NM() procedure to obtain one. The ability to work with symbolic
values are one of the things that make computer algebra systems so powerful,
and they are discussed in more depth in later sections.

403

404
405
406
407
408
409
410
411
412

413

414
415

416
417

418
419

420
421

422
423
424
425
426
427

428
429

430

431

432

433

434
435
436
437

v.158 - 07/12/17 Introduction To Programming With MathPiper 23/136

6.2.1.2 The Even?() Procedure

An example of a simple procedure is Even?(). The Even?() procedure takes a
number as input and returns True if the number is even and False if it is not
even:

In> Even?(4)
Result: True

In> Even?(5)
Result: False

MathPiper has a large number of procedures, some of which are described in
more depth in the MathPiper Documentation section and the MathPiper
Programming Fundamentals section. A complete list of MathPiper's
procedures is contained in the MathPiperDocs plugin, and more of these
procedures will be discussed soon.

6.2.2 Accessing Previous Input And Results

The MathPiper console is like a mini text editor, which means you can copy text
from it, paste text into it, and edit existing text. You can also reevaluate previous
input by simply placing the cursor on the desired In> line and pressing <enter>
on it again.

The console also keeps a history of all input lines that have been evaluated. If
the cursor is placed on any In> line, pressing <ctrl><up arrow> will display
each previous line of input that has been entered.

Finally, the MathPiperConsole associates the most recent computation result
with the number sign (#) character. If you want to use the most recent result in
a new calculation, access it with this character:

In> 5*8
Result: 40

In> #
Result: 40

In> # * 2 (Note: there needs to be a space between the # and * characters.)
Result: 80

6.3 Saving And Restoring A Console Session

If you need to save or open the contents of a console session, you can use the
"File" menu that is present in the upper left corner of the MathPiperConsole
window.

438

439
440
441

442
443

444
445

446
447
448
449
450

451

452
453
454
455

456
457
458

459
460
461

462
463

464
465

466
467

468

469
470
471

v.158 - 07/12/17 Introduction To Programming With MathPiper 24/136

6.3.1 Syntax Errors

An expression's syntax is related to whether it is typed correctly or not. If input
is sent to MathPiper that has one or more typing errors in it, MathPiper will
return an error message which is meant to be helpful for locating the error. For
example, if a backwards slash (\) is entered for division instead of a forward slash
(/), MathPiper returns the following error message:

In> 12 \ 6

Exception: Error encountered during parsing: Error parsing expression near
token ***(\)***. Starting at index 3

To fix this problem, change the \ to a /, and reevaluate the expression.

This section provided a short introduction to using MathPiper as a numeric
calculator. The next section contains a short introduction to using MathPiper as a
symbolic calculator.

6.4 Using The MathPiper Console As A Symbolic Calculator

MathPiper is good at numeric computation, but it is great at symbolic
computation. If you have never used a system that can do symbolic computation,
you are in for a treat!

As a first example, let's try adding fractions (which are also called rational

numbers). Add
1
2
+

1
3

in the MathPiper console:

In> 1/2 + 1/3
Result: 5/6

Instead of returning a numeric result like 0.83333333333333333333 (which is
what a scientific calculator would return) MathPiper added these two rational

numbers symbolically and returned
5
6

. If you want to work with this result

further, remember that it has also been stored in the # symbol:

In> #
Result: 5/6

Let's say that you would like to have MathPiper determine the numerator of this
result. This can be done by using (or calling) the Numerator() procedure:

In> Numerator(#)
Result: 5

472

473
474
475
476
477

478

479
480

481

482
483
484

485

486
487
488

489

490

491
492

493
494

495

496

497
498

499
500

501
502

v.158 - 07/12/17 Introduction To Programming With MathPiper 25/136

Unfortunately, the # symbol cannot be used to have MathPiper determine the

denominator of
5
6

because it only holds the result of the most recent

calculation, and
5
6

was calculated two steps back.

6.4.1 Variables And The Variable State

What would be nice is if MathPiper provided a way to assign results (which are
also called values) to symbols that we choose, instead of ones that it chooses.
Fortunately, this is exactly what it does! Names that can be associated with
values are called variables. Variable names must start with an upper or lower
case letter and be followed by zero or more upper case letters, lower case
letters, or numbers. Examples of variable names include:

 a, b, x, y, answer, totalAmount, and index.

Even though variable names can start with an upper case letter, by convention
all variables should begin with a lower case letter. If the name is composed of
more than one word, the first letter of each word after the first word should be
capitalized as shown in these examples:

numberOfDoors, seatsInRoom6, and averageTemperature.

Note: the underscore (_) character cannot be used in variable names. One
or more underscore characters in a name identify it as a constant. A
constant is a name that always evaluates to itself, and it is discussed
shortly.

The process of associating a value with a variable is called assigning the value
to the variable, and this consists of placing the name of a variable you would
like to create on the left side of the assignment operator (:=) and an
expression on the right side of this operator. This expression is evaluated, and
the value it returns is assigned to the variable. For example, the following code
assigns the value 5 to the variable 'a':

In> a := 5
Result: 5

The assignment operator (:=) is read as "becomes", and therefore the above
expression reads " 'a' becomes 5".

If the variable 'a' is evaluated by itself, it returns the value that is currently
assigned to it:

In> a
Result: 5

503

504

505

506

507
508
509
510
511
512

513

514
515
516
517

518

519
520
521
522

523
524
525
526
527
528

529
530

531
532

533
534

535
536

v.158 - 07/12/17 Introduction To Programming With MathPiper 26/136

The assignment operator (:=) is meant to look like an arrow that points from
right to left like in order to emphasize the right-to-left assignment of variables.←

Let's recalculate
1
2
+

1
3

but this time we will assign the result to the variable 'a':

In> a := (1/2 + 1/3)
Result: 5/6

In> a
Result: 5/6

In> Numerator(a)
Result: 5

In> Denominator(a)
Result: 6

In this example, the assignment operator (:=) was used to assign the result value
5
6

to the variable 'a'. When 'a' was evaluated by itself, the value that was

most recently assigned to it (in this case
5
6

) was returned. This value will

stay assigned to the variable 'a' as long as MathPiper is running, unless 'a' is
unassigned with the Unassign() procedure, or 'a' has another value assigned to
it. This is why we were able to determine both the numerator and the
denominator of the rational number assigned to 'a' using two procedures in turn.
(Note: there can be no spaces between the : and the = in the := operator)

6.4.1.1 The Global Variable State

The global variable state is the list of all of the global variables that are
currently assigned, along with the values that have been assigned to them. A
global variable is a variable that is accessible by all the code in the system. The
other main kind of variable is a local variable. Local variables (which are covered
in a later section) are accessible to limited sections of code. All variables that we
will be using in the MathPiper console are global variables.

The State() procedure can be used to obtain a copy of the global variable state:

In> a := 1
Result: 1

In> b := 2
Result: 2

In> State()
Result: [a:1,b:2]

537
538

539

540
541

542
543

544
545

546
547

548

549

550

551
552
553
554
555

556

557
558
559
560
561
562

563

564
565

566
567

568
569

v.158 - 07/12/17 Introduction To Programming With MathPiper 27/136

The State button in the console can also be used to view the global state. When
this button is pressed, a window is shown that contains the global variable state:

It is a good idea to keep a current variable state window open while
programming because it makes it easier to see what effects the code is
producing.

6.4.1.2 Evaluating An Unassigned Variable Throws An Exception

If an unassigned variable is evaluated, an exception is thrown:

In> Unassign(a)
Result: True

In> a
Result: Exception
Exception: The variable <a> does not have a value assigned to it.

The Unassign() procedure unassigns a variable, and it returns the value True as
a result to indicate that the variable that was sent to it was successfully
unassigned. Many procedures return either return True or False to indicate
whether or not the operation they performed succeeded. True and False are
constants, and constants are discussed in the next section.

6.4.1.3 Constants

A constant is a name that evaluates to itself. The following is list of some
constants that are predefined in MathPiper:

• True

• False

• Infinity

• Undefined

• All

• None

570
571

572
573
574

575

576

577
578

579
580
581

582
583
584
585
586

587

588
589

590

591

592

593

594

595

v.158 - 07/12/17 Introduction To Programming With MathPiper 28/136

The constant Infinity evaluates to itself:

In> Infinity
Result: Infinity

If an attempt is made to assign a value to a constant, an exception is thrown:

In> Infinity := 3
Result: Exception
Exception: <Infinity> is a constant, and values cannot be assigned to
constants.

As mentioned earlier, some procedures return a predefined constant as a value.
For example, the Assigned?() procedure returns True if a variable is assigned,
and it returns False if it is unassigned:

In> a := 1
Result: 1

In> a
Result: 1

In> Assigned?(a)
Result: True

All currently assigned variables can be unassigned by passing the constant 'All'
to Unassign:

In> b := 2
Result: 2

In> State()
Result: [a:1,b:2]

In> Unassign(All)
Result: True

In> State()
Result: []

One way to indicate that a name is a constant is to use an underscore character
(_) as the first letter in the name:

_x, _y, _heavy

Constants that start with an underscore evaluate to themselves:

596

597
598

599

600
601
602
603

604
605
606

607
608

609
610

611
612

613
614

615
616

617
618

619
620

621
622

623
624

625

626

v.158 - 07/12/17 Introduction To Programming With MathPiper 29/136

In> _x
Result: _x

and values cannot be assigned to these constants either:

In> _x := 3
Result: Exception
<_x> is a constant, and values cannot be assigned to constants.

Numbers are also constants because they evaluate to themselves:

In> 3
Result: 3

6.4.1.4 Calculating With Constants

Constants may not appear to be very useful, but they provide the flexibility
needed for computer algebra systems to perform symbolic calculations. In order
to demonstrate this flexibility, let's first factor some numbers using the Factor()
procedure:

In> Factor(8)
Result: 2^3

In> Factor(14)
Result: 2*7

In> Factor(2343)
Result: 3*11*71

Now let's factor an expression that contains the constant '_x':

In> Factor(_x^2 + 24*_x + 80)
Result: (_x+4)*(_x+20)

In> Expand(#)
Result: _x^2+24*_x+80

Factor() uses the rules of algebra to manipulate the algebraic expression that
is sent to it into factored form. The Expand() procedure was then able to take
the factored expression (_x+4)*(_x+20) and manipulate it until it was expanded.
One way to remember what the procedures Factor() and Expand() do is to look
at the second letters of their names. The 'a' in Factor can be thought of as
adding parentheses to an expression, and the 'x' in Expand can be thought of
xing out or removing parentheses from an expression.

627
628

629

630
631
632

633

634
635

636

637
638
639
640

641
642

643
644

645
646

647

648
649

650
651

652
653
654
655
656
657
658

v.158 - 07/12/17 Introduction To Programming With MathPiper 30/136

6.4.1.5 Variable And Constant Names Are Case Sensitive

MathPiper variable and constant names are case sensitive. This means
MathPiper takes into account the case of each letter in a variable name when it
is deciding if two or more variable names are the same variable or not. For
example, the variable name Box and the variable name box are not the same
variable because the first variable name starts with an upper case 'B' and the
second variable name starts with a lower case 'b':

In> Box := 1
Result: 1

In> box := 2
Result: 2

In> Box
Result: 1

In> box
Result: 2

6.4.1.6 Using More Than One Variable

Programs are able to have more than one variable. The following example shows
three variables being used:

In> a := 2
Result: 2

In> b := 3
Result: 3

In> a + b
Result: 5

In> answer := (a + b)
Result: 5

In> answer
Result: 5

The part of an expression that is on the right side of an assignment operator is
always evaluated first, and the result value is then assigned to the variable that
is on the left side of the operator.

Now that you have seen how to use the MathPiper console as both a symbolic
and a numeric calculator, our next step is to take a closer look at the procedures
that are included with MathPiper. As you will soon discover, MathPiper contains

659

660
661
662
663
664
665

666
667

668
669

670
671

672
673

674

675
676

677
678

679
680

681
682

683
684

685
686

687
688
689

690
691
692

v.158 - 07/12/17 Introduction To Programming With MathPiper 31/136

numerous procedures that deal with a wide range of mathematics.

6.5 Exercises

Use the MathPiper console that is at the bottom of the MathPiperIDE application
to complete the following exercises.

6.5.1 Exercise 1
Answer each one of the following questions:

a) What is the purpose of the NM() procedure?

b) What is a variable?

c) Are the variables 'x' and 'X' the same variable?

d) What is the difference between an assigned variable and an unassigned
variable?

e) What happens if you evaluate an unassigned variable?

f) How can a value be assigned to a variable?

g) How can a variable be unassigned?

h) What does the # character do?

6.5.2 Exercise 2
Perform the following calculation:

1
4
+

3
8
−

7
16

6.5.3 Exercise 3

a) Assign the variable answer to the result of the calculation
1
5
+

7
4
+

15
16

using the following line of code:

In> answer := (1/5 + 7/4 + 15/16)

b) Use the Numerator() procedure to calculate the numerator of answer.

c) Use the Denominator() procedure to calculate the denominator of answer.

d) Use the NM() procedure to calculate the numeric value of answer.

e) Use the Unassign() procedure to unassign the variable answer and verify

693

694

695
696

697

698

699

700

701

702
703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

v.158 - 07/12/17 Introduction To Programming With MathPiper 32/136

that answer is unassigned by using the State() procedure and by using the
Global State window.

6.5.4 Exercise 4

Assign
1
4

to variable x,
3
8

to variable y, and
7

16
to variable z using the

:= operator (remember, there is no space between the : and the =). Then
perform the following calculations:

a)
In> x

b)
In> y

c)
In> z

d)
In> x + y

e)
In> x + z

f)
In> x + y + z

718
719

720

721

722
723

724
725

726
727

728
729

730
731

732
733

734
735

v.158 - 07/12/17 Introduction To Programming With MathPiper 33/136

7 The MathPiper Documentation Plugin

MathPiper has a significant amount of reference documentation written for it
and this documentation has been placed into a plugin called MathPiperDocs in
order to make it easier to navigate. The MathPiperDocs plugin is available in a
tab called "MathPiperDocs", which is near the right side of the MathPiperIDE
application. Click on this tab to open the plugin and click on it again to close it.

The left side of the MathPiperDocs window contains the names of all the
procedures that come with MathPiper and the right side of the window contains
a mini-browser that can be used to navigate the documentation.

7.1 Procedure List

MathPiper's procedures are divided into two main categories called user
procedures and programmer procedures. In general, the user procedures
are used for solving problems in the MathPiper console or with short programs
and the programmer procedures are used for longer programs. However,
users will often use some of the programmer procedures and programmers will
use the user procedures as needed.

Both the user and programmer procedure names have been placed into a "tree"
on the left side of the MathPiperDocs window to allow for easy navigation. The
branches of the procedure tree can be opened and closed by clicking on the
small "circle with a line attached to it" symbol, which is to the left of each
branch. Both the user and programmer branches have the procedures they
contain organized into categories and the top category in each branch lists all
the procedures in the branch in alphabetical order for quick access. Clicking
on a procedure will bring up documentation about it in the browser window and
selecting the Collapse button at the top of the plugin will collapse the tree.

Don't be intimidated by the large number of categories and procedures
that are in the procedure tree! Most MathPiperIDE beginners will not know
what most of them mean, and some will not know what any of them mean. Part
of the benefit MathPiperIDE provides is exposing the user to the existence of
these categories and procedures. The more you use MathPiperIDE, the more
you will learn about these categories and procedures and someday you may even
get to the point where you understand all of them. This book is designed to show
beginners how to begin using these procedures using a gentle step-by-step
approach.

7.2 Mini Web Browser Interface

MathPiper's reference documentation is in HTML (or web page) format and so
the right side of the plugin contains a mini web browser that can be used to
navigate through these pages. The browser's home page contains links to the

736

737
738
739
740
741

742
743
744

745

746
747
748
749
750
751

752
753
754
755
756
757
758
759
760

761
762
763
764
765
766
767
768
769

770

771
772
773

v.158 - 07/12/17 Introduction To Programming With MathPiper 34/136

main parts of the MathPiper documentation. As links are selected, the Back and
Forward buttons in the upper right corner of the plugin allow the user to move
backward and forward through previously visited pages and the Home button
navigates back to the home page.

The procedure names in the procedure tree all point to sections in the HTML
documentation so the user can access procedure information either by
navigating to it with the browser or jumping directly to it with the procedure
tree.

7.3 Exercises

7.3.1 Exercise 1
Locate the NM(), Even?(), Odd?(), Unassign(), Assigned?(), Numerator(),
Denominator(), and State() procedures in the All Procedures section of the
MathPiperDocs plugin, and read the information that is available on them.
List the one line descriptions that are at the top of the documentation for
each of these procedures.

7.3.2 Exercise 2
Locate the NM(), Even?(), Odd?(), Unassign(), Assigned?(), Numerator(),
Denominator(), and State() procedures in the Mathematical Procedures
section or the Programming Procedures section of the MathPiperDocs plugin
and list which category each procedure is contained in. Don't include the
Alphabetical or Built In categories in your search. For example, the NM()
procedure is in the Numbers (Operations) category.

774
775
776
777

778
779
780
781

782

783

784
785
786
787
788

789

790
791
792
793
794
795

v.158 - 07/12/17 Introduction To Programming With MathPiper 35/136

8 MathPiperIDE Worksheet Files

While MathPiperIDE's ability to execute code inside a console provides a
significant amount of power to the user, most of MathPiperIDE's power is derived
from worksheets. MathPiperIDE worksheets are text files that have a .mpws
extension and are which are able to execute multiple types of code in a single
text area. The worksheet_demo_1.mpws file (which is preloaded in the
MathPiperIDE environment when it is first launched) demonstrates how a
worksheet is able to execute multiple types of code in what are called code
folds. (Note: a new .mpws file needs to be saved immediately after it is
created, because MathPiperIDE will not recognize it as a MathPiper
worksheet until it has been saved.)

8.1 Code Folds And Source Code

A code fold is a named section inside a MathPiperIDE worksheet that contains
source code which can be executed by placing the cursor inside of it and
pressing <shift><Enter>. One or more expressions that are typed into a code
fold are called a computer program, and these expressions are the program's
source code. A fold always begins with a start tag, which starts with a percent
symbol "%" followed by the name of the fold type (like this: %<foldtype>).
The end of a fold is marked by an end tag, which looks like %/<foldtype>. The
only difference between a fold's start tag and its end tag is that the end tag has a
slash "/" after the "%".

For example, here is a MathPiper fold that will print the result of 2 + 3 to the
MathPiper console (Note: the semicolon ";" that is at the end of the line of
code is required.):

%mathpiper

2 + 3;

%/mathpiper

The output generated by a fold (called the parent fold) is wrapped in a new
fold (called a child fold) which is indented and placed just below the parent.
This can be seen when the above fold is executed by pressing <shift><enter>
inside of it:

%mathpiper

2 + 3;

%/mathpiper

796

797
798
799
800
801
802
803
804
805
806

807

808
809
810
811
812
813
814
815
816

817
818
819

820

821

822

823
824
825
826

827

828

829

v.158 - 07/12/17 Introduction To Programming With MathPiper 36/136

 %output,preserve="false"
 Result: 5
. %/output

The most common type of output fold is %output, and by default folds of type
%output have their preserve property set to false. This tells MathPiperIDE to
overwrite the %output fold with a new version during the next execution of its
parent. If preserve is set to true, the fold will not be overwritten, and a new fold
will be created instead.

There are other kinds of child folds, but in the rest of this document they will all
be referred to in general as "output" folds.

8.1.1 The title Attribute

Folds can also have what is called a "title" attribute placed after the start tag
that describes what the fold contains. For example, the following %mathpiper
fold has a "title" attribute that indicates that the fold adds two number together:

%mathpiper,title="Add two numbers together."

2 + 3;

%/mathpiper

The title attribute is added to the start tag of a fold by placing a comma after the
fold's type name and then adding the text title="<text>" after the comma.
(Note: no spaces can be present before or after the comma (,) or the
equals sign (=)).

8.2 Automatically Inserting Folds & Removing Unpreserved Folds

Typing the top and bottom fold lines (for example:

%mathpiper

%/mathpiper

can be tedious so MathPiperIDE has a way to automatically insert them. Place
the cursor at the beginning of a blank line in a .mpws worksheet file where you
would like a fold inserted, and then press the right mouse button.

A popup menu will be displayed, and at the top of this menu are items that read
"Insert MathPiper Fold", "Insert Group Fold", etc. If you select one of these
menu items, an empty code fold of the proper type will automatically be inserted
into the .mpws file at the position of the cursor.

830
831
832

833
834
835
836
837

838
839

840

841
842
843

844

845

846

847
848
849
850

851

852

853

854

855
856
857

858
859
860
861

v.158 - 07/12/17 Introduction To Programming With MathPiper 37/136

This popup menu also has a menu item called "Remove Unpreserved Folds". If
this menu item is selected, all folds that have a "preserve="false"" property will
be removed.

8.3 Placing Text Outside Of A Fold

Text can also be placed outside of a fold like the following example shows:

Text can be placed above folds like this.

text text text text
text text text text

%mathpiper,title="Fold 1"

2 + 3;

%/mathpiper

Text can be placed between folds like this.

text text text text
text text text text

%mathpiper,title="Fold 2"

3 + 4;

%/mathpiper

Text can be placed after folds like this.

text text text text
text text text text

Placing text above a fold is useful for describing what is being done inside the
fold.

8.4 Rectangular Selection Mode And Text Area Splitting

8.4.1 Rectangular Selection Mode

One capability that MathPiperIDE has that a word processor may not have is the
ability to select rectangular sections of text. To see how this works, do the
following:

862
863
864

865

866

867

868
869

870

871

872

873

874
875

876

877

878

879

880
881

882
883

884

885

886
887
888

v.158 - 07/12/17 Introduction To Programming With MathPiper 38/136

1) Type three or four lines of text into a text area.

2) Hold down the <Alt> key (or the <control> key on Macintosh computers)
then slowly press the backslash key (\) a few times. The bottom of the
MathPiperIDE window contains a text field that MathPiperIDE uses to
communicate information to the user. As <Alt>\ is repeatedly pressed,
messages are displayed that read Rectangular selection is on and
Rectangular selection is off.

3) Turn rectangular selection on and then select some text in order to see
how this is different than normal selection mode. When you are done
experimenting, set rectangular selection mode to off.

4) Holding down the <CTRL> key (or the <command> key on Macintosh
computers) in regular selection mode will temporarily place the system into
rectangular selection mode.

Most of the time normal selection mode is what you want to use, but in certain
situations rectangular selection mode is better.

8.4.2 Text area splitting

Sometimes it is useful to have two or more text areas open for a single document
or multiple documents so that different parts of the documents can be edited at
the same time. MathPiperIDE has this ability and it is called splitting.

If you look just to the right of the toolbar there is an icon that looks like a blank
window, an icon to the right of it that looks like a window that was split
horizontally, and an icon to the right of the horizontal one that is split vertically.
If you let your mouse hover over these icons, a short description will be
displayed for each of them.
Select a text area and then experiment with splitting it by pressing the horizontal
and vertical splitting buttons. Move around these split text areas with their
scroll bars, and when you want to unsplit the document, just press the "Unsplit
All" icon.

8.4.3 Exercises

A MathPiperIDE worksheet file called "intro_book_examples_1.mpws" is
included in the mathpiperide/examples directory and it is opened by default
when the software is first launched after it is downloaded. It contains a number
of %mathpiper folds that contain code examples from the previous sections of
this book. Notice that all of the lines of code have a semicolon (;) placed after
them. The reason this is needed is explained in a later section.

Download this worksheet file to your computer from the section on this website
that contains the highest revision number and then open it in MathPiperIDE.

889

890
891
892
893
894
895

896
897
898

899
900
901

902
903

904

905
906
907

908
909
910
911
912

913
914
915
916

917

918
919
920
921
922
923

924
925

v.158 - 07/12/17 Introduction To Programming With MathPiper 39/136

Then, use the worksheet to do the following exercises.

8.4.3.1 Exercise 1

Execute folds 1-8 in the top section of the worksheet by placing the cursor
inside of the fold and then pressing <shift><enter> on the keyboard.

8.4.3.2 Exercise 2

The code in folds 9 and 10 have errors in them. Fix the errors and then
execute the folds again.

8.4.3.3 Exercise 3

Use the empty fold 11 to calculate the expression 100 - 23;

8.4.3.4 Exercise 4

Perform the following calculations by creating new folds at the bottom of
the worksheet (using the right-click popup menu) and placing each
calculation into its own fold:

a) 2*7 + 3

b) 18/3

c) 234238342 + 2038408203

d) 324802984 * 2308098234

e) Factor the result that was calculated in d).

926

927

928
929

930

931
932

933

934

935

936
937
938

939

940

941

942

943

v.158 - 07/12/17 Introduction To Programming With MathPiper 40/136

9 MathPiper Programming Fundamentals

The MathPiper language consists of expressions and an expression consists of
one or more symbols that represent values, operators, variables, and
procedures. In this section expressions are explained along with the values,
operators, variables, and procedures they consist of.

9.1 Values, Literals, And Expressions

A value is a single symbol or a group of symbols that represent an idea. For
example, the value:

3

represents the number three, the value:

0.5

represents the number one half, and the value:

"Mathematics is powerful!"

is a "string" of characters that represents an English sentence (strings are
covered in a later section).

A literal is any notation in computer source code that represents a value. Any
number that is present in the source code of a program is a literal. For example,
the 3 above is an integer number literal, and the number 0.5 is a real number
literal. Additional literals will be discussed in later sections.

Expressions can be created by using values and operators as building blocks.
The following are examples of simple expressions that have been created this
way:

3

2 + 3

5 + 6*21/7 - 2^3

In MathPiper, expressions can be evaluated, which means that they can be
transformed into a result value by predefined rules. For example, when the
expression 2 + 3 is evaluated, the result value that is produced is 5:

In> 2 + 3
Result: 5

9.2 Operators

In the above expressions, the characters +, −, *, /, ^ are called operators and

944

945
946
947
948

949

950
951

952

953

954

955

956

957
958

959
960
961
962

963
964
965

966

967

968

969
970
971

972
973

974

975

v.158 - 07/12/17 Introduction To Programming With MathPiper 41/136

their purpose is to tell MathPiper what operations to perform on the values in
an expression. For example, in the expression 2 + 3, the addition operator +
tells MathPiper to add the integer 3 to the integer 2 and return the result.

The subtraction operator is −, the multiplication operator is *, / is the
division operator, % is the remainder operator, and ^ is the exponent
operator. MathPiper has more operators in addition to these and some of them
will be covered later.

The following examples show the −, *, /,%, and ^ operators being used:

In> 5 - 2
Result: 3

In> 3*4
Result: 12

In> 30/3
Result: 10

In> 11%5
Result: 1

In> 2^3
Result: 8

The − character can also be used to indicate a negative number:
In> -3
Result: -3

Subtracting a negative number results in a positive number (Note: there must be
a space between the two negative signs):
In> - -3
Result: 3

In MathPiper, operators are symbols (or groups of symbols) that are
implemented with procedures. One can either call the procedure that an
operator represents directly, or use the operator to call the procedure indirectly.
However, using operators requires less typing and they often make a program
easier to read.

9.3 Operator Precedence

When expressions contain more than one operator, MathPiper uses a set of rules
called operator precedence to determine the order in which the operators are
applied to the values in the expression. Operator precedence is also referred to
as the order of operations. Operators with higher precedence are evaluated

976
977
978

979
980
981
982

983

984
985

986
987

988
989

990
991

992
993

994
995
996

997
998
999

1000

1001
1002
1003
1004
1005

1006

1007
1008
1009
1010

v.158 - 07/12/17 Introduction To Programming With MathPiper 42/136

before operators with lower precedence. The following table shows a subset of
MathPiper's operator precedence rules with higher precedence operators being
placed higher in the table:

^ Exponents (right associative).

/ Then division (left associative).

* Then multiplication (left associative).

% Then the remainder operator (left associative).

+, − Finally, addition and subtraction (left associative).

This multi-operator expression will be used as an example to illustrate the
precedence rules.

1) source code form:

5 + 6*21/7 - 2^3

2) traditional mathematics form:

3) expression tree form:

In> Show(TreeView('(5 + 6*21/7 - 2^3)))
Result: class javax.swing.JFrame

1011
1012
1013

1014

1015

1016

1017

1018

1019
1020

1021

1022

1023

1024

1025
1026

v.158 - 07/12/17 Introduction To Programming With MathPiper 43/136

The ' operator in the above code is named the “hold” operator, and it prevents an
expression from being evaluated. In the following code, the ' operator is used to
prevent the expression 2 + 3 and the variable 'a' from being evaluated:

In> '(2 + 3)
Result: 2+3

In> a := 3
Result: 3

In> 'a
Result: a

The “hold” operator is useful when one wants to work with an expression instead
of the value that the expression returns.

MathPiper uses post-order evaluation of expressions instead of PEMDAS. This
is how post-order evaluation works (See
http://patternmatics.com/test/expression_structure.html):

1) Start with the operator that is at the top of the expression tree.

2) Evaluate the operator's left subtree.

3) Evaluate the operator's right subtree.

4) Evaluate the operator.

Let's manually apply the precedence rules and post-order evaluation to the multi-
operator expression we used earlier.

1027
1028
1029

1030
1031

1032
1033

1034
1035

1036
1037

1038
1039
1040

1041

1042

1043

1044

1045
1046

http://patternmatics.com/test/expression_structure.html

v.158 - 07/12/17 Introduction To Programming With MathPiper 44/136

According to post-order evaluation and the precedence rules, this is the order in
which MathPiper evaluates the operations in this expression:

5 + 6*21/7 - 2^3
5 + 6*3 - 2^3
5 + 18 - 2^3
23 - 2^3
23 - 8
4

Starting with the first line, MathPiper evaluates the / operator first, which
results in the 3 in the line below it. In the second line, the * operator is executed
next, and so on. The last line shows that the final result after all of the operators
have been evaluated is 15.

9.4 Changing The Order Of Operations In An Expression

The default order of operations for an expression can be changed by grouping
various parts of the expression within parentheses (). Parentheses force the
code that is placed inside of them to be evaluated before any other operators are
evaluated. For example, the expression 2 + 4*5 evaluates to 22 using the
default precedence rules:

In> 2 + 4*5
Result: 22

If parentheses are placed around 2 + 4, however, the addition operator is forced
to be evaluated before the multiplication operator and the result is 30:

In> (2 + 4)*5
Result: 30

Parentheses can also be nested and nested parentheses are evaluated from the
most deeply nested parentheses outward:

In> ((2 + 4)*3)*5
Result: 90

(Note: precedence adjusting parentheses are different from the parentheses that
are used to call procedures.)

Since parentheses are evaluated before any other operators, they are placed at
the top of the precedence table:

1047
1048

1049
1050
1051
1052
1053
1054

1055
1056
1057
1058

1059

1060
1061
1062
1063
1064

1065
1066

1067
1068

1069
1070

1071
1072

1073
1074

1075
1076

1077
1078

v.158 - 07/12/17 Introduction To Programming With MathPiper 45/136

() Parentheses are evaluated from the inside out.

^ Exponents (right associative).

/ Then division (left associative).

* Then multiplication (left associative).

% Then the remainder operator (left associative).

+, − Finally, addition and subtraction (left associative).

9.5 Procedures & Procedure Names

In programming, procedures are named sequences of code that can be executed
one or more times by being called from other parts of the same program or
called from other programs. Procedures can have values passed to them from
the calling code (called arguments), and they always return a value back to
the calling code when they are finished executing. An example of a procedure is
the Even?() procedure, which was discussed in an previous section.

Procedures are one way that MathPiper enables code to be reused. Most
programming languages allow code to be reused in this way, although in other
languages these named sequences of code are sometimes called subroutines,
procedures, or methods.

The procedures that come with MathPiper have names that consist of either a
single word (such as Sum()) or multiple words that have been put together to
form a compound word (such as FillList()). All letters in the names of
procedures that come with MathPiper are lower case except the beginning letter
in each word, which are upper case.

9.6 Procedures That Produce Side Effects

Most procedures are executed to obtain the results they produce, but some
procedures are executed in order to have them perform work that is not in
the form of a result. Procedures that perform work that is not in the form of a
result are said to produce side effects. Side effects include many forms of work
such as sending information to the user, opening files, and changing values in the
computer's memory.

When a procedure produces a side effect that sends information to the user, this
information has the words Side Effects: placed before it in the output instead of
the word Result:. The Echo() and Write() procedures are examples of
procedures that produce side effects, and they are covered in the next section.

1079

1080

1081

1082

1083

1084

1085

1086
1087
1088
1089
1090
1091

1092
1093
1094
1095

1096
1097
1098
1099
1100

1101

1102
1103
1104
1105
1106
1107

1108
1109
1110
1111

v.158 - 07/12/17 Introduction To Programming With MathPiper 46/136

9.6.1 Printing Related Procedures: Echo(), Write(), And Newline()

The printing related procedures send text information to the user and this is
usually referred to as "printing" in this document. However, it may also be called
"echoing" and "writing".

9.6.1.1 The Echo() Procedure

The Echo() procedure takes one expression (or multiple expressions separated
by commas) evaluates each expression, and then prints the results as side effect
output. The following examples illustrate this:

In> Echo(1)
Result: True
Side Effects>
1

In this example, the number 1 was passed to the Echo() procedure, the number
was evaluated (all numbers evaluate to themselves), and the result of the
evaluation was then printed as a side effect. Notice that Echo() also returned a
result. In MathPiper, all procedures return a result, but procedures whose main
purpose is to produce a side effect usually just return a result of True if the side
effect succeeded or False if it failed. In this case, Echo() returned a result of
True because it was able to successfully print a 1 as its side effect.

The next example shows multiple expressions being sent to Echo() (notice that
the expressions are separated by commas):

In> Echo(1, 1+2, 2*3)
Result: True
Side Effects>
1 3 6

The expressions were each evaluated and their results were returned (separated
by spaces) as side effect output.

Each time an Echo() procedure is executed, it always forces the display to drop
down to the next line after it is finished. This can be seen in the following
program, which is similar to the previous one except it uses a separate Echo()
procedure to display each expression:

%mathpiper

Echo(1);

Echo(1+2);

Echo(2*3);

1112

1113
1114
1115

1116

1117
1118
1119

1120
1121
1122
1123

1124
1125
1126
1127
1128
1129
1130

1131
1132

1133
1134
1135
1136

1137
1138

1139
1140
1141
1142

1143

1144

1145

1146

v.158 - 07/12/17 Introduction To Programming With MathPiper 47/136

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 3
 6
. %/output

Notice how the 1, the 3, and the 6 are each on their own line.

Now that we have seen how Echo() works, let's use it to do something useful. If
more than one expression is evaluated in a %mathpiper fold, only the result from
the last expression that was evaluated (which is usually the bottommost
expression) is displayed:

%mathpiper

a := 1;
b := 2;
c := 3;

%/mathpiper

 %output,preserve="false"
 Result: 3
. %/output

In MathPiper, programs are executed one line at a time, starting at the
topmost line of code and working downwards from there. In this example,
the line a := 1; is executed first, then the line b := 2; is executed, and so on.
Notice, however, that even though we wanted to see what was assigned to all
three variables, only the last variable's value was displayed.

The following example shows how Echo() can be used to display the values that
are assigned to all three variables:

%mathpiper

a := 1;
Echo(a);

b := 2;
Echo(b);

c := 3;
Echo(c);

1147

1148
1149
1150
1151
1152
1153
1154
1155

1156

1157
1158
1159
1160

1161

1162
1163
1164

1165

1166
1167
1168

1169
1170
1171
1172
1173

1174
1175

1176

1177
1178

1179
1180

1181
1182

v.158 - 07/12/17 Introduction To Programming With MathPiper 48/136

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
. %/output

9.6.1.2 Echo Procedures Are Useful For "Debugging" Programs

The errors that are in a program are often called "bugs". This name came from
the days when computers were the size of large rooms and were made using
electromechanical parts. Periodically, bugs would crawl into the machines and
interfere with its moving mechanical parts and this would cause the machine to
malfunction. The bugs needed to be located and removed before the machine
would run properly again.

Of course, even back then most program errors were produced by programmers
entering wrong programs or entering programs wrong, but they liked to say that
all of the errors were caused by bugs and not by themselves! The process of
fixing errors in a program became known as debugging and the names "bugs"
and "debugging" are still used by programmers today.

One of the standard ways to locate bugs in a program is to place Echo()
procedure calls in the code at strategic places that print the contents of
variables and display messages. These Echo() procedures will enable you to
see what your program is doing while it is running. After you have found and
fixed the bugs in your program, you can remove the debugging Echo() procedure
calls or comment them out if you think they may be needed later (comments are
covered in a later section).

9.6.1.3 Write()

The Write() procedure is similar to the Echo() procedure except it does not
automatically drop the display down to the next line after it finishes executing:

%mathpiper

Write(1);

Write(2);

Echo(3);

1183

1184
1185
1186
1187
1188
1189
1190
1191

1192

1193
1194
1195
1196
1197
1198

1199
1200
1201
1202
1203

1204
1205
1206
1207
1208
1209
1210

1211

1212
1213

1214

1215

1216

1217

v.158 - 07/12/17 Introduction To Programming With MathPiper 49/136

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 123
. %/output

Write() and Echo() have other differences besides the one discussed here and
more information about them can be found in the documentation for these
procedures.

9.6.1.4 NewLine()

The NewLine() procedure starts a new line in the side effects output. It can be
used to print blank lines, which are useful for placing vertical space between
printed lines:

%mathpiper

a := 1;
Echo(a);
NewLine();

b := 2;
Echo(b);
NewLine();

c := 3;
Echo(c);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1

 2

 3
. %/output

9.7 Expressions Are Separated By Semicolons

As discussed earlier, all of the expressions that are inside of a %mathpiper fold

1218

1219
1220
1221
1222
1223
1224

1225
1226
1227

1228

1229
1230
1231

1232

1233
1234
1235

1236
1237
1238

1239
1240

1241

1242
1243
1244
1245
1246

1247

1248
1249

1250

1251

v.158 - 07/12/17 Introduction To Programming With MathPiper 50/136

must have a semicolon (;) after them. However, the expressions evaluated in the
MathPiper console did not have a semicolon after them. MathPiper actually
requires that all expressions end with a semicolon, but one does not need to add
a semicolon to an expression that is typed into the MathPiper console because
the console adds it automatically when the expression is executed.

9.7.1 Placing More Than One Expression On A Line In A Fold

All the previous code examples have had each of their expressions on a separate
line, but multiple expressions can also be placed on a single line because the
semicolons tell MathPiper where one expression ends and the next one begins:

%mathpiper

a := 1; Echo(a); b := 2; Echo(b); c := 3; Echo(c);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
. %/output

The spaces that are in the code of this example are used to make the code more
readable. Any spaces that are present within any expressions or between them
are ignored by MathPiper and if we remove the spaces from the previous code,
the output remains the same:

%mathpiper

a:=1;Echo(a);b:=2;Echo(b);c:=3;Echo(c);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
. %/output

1252
1253
1254
1255
1256

1257

1258
1259
1260

1261

1262

1263

1264
1265
1266
1267
1268
1269
1270
1271

1272
1273
1274
1275

1276

1277

1278

1279
1280
1281
1282
1283
1284
1285
1286

v.158 - 07/12/17 Introduction To Programming With MathPiper 51/136

9.7.2 Placing Consecutive Expressions Into A Code Sequence

It is often useful to place a sequence of expressions that are used together to
accomplish a task into a group. In MathPiper these groups are called "code
sequences." A code sequence (which is also called a compound expression)
consists of one or more expressions that are separated by semicolons and placed
within an open brace ({) and close brace (}) pair. When a code sequence is
evaluated, each expression in the sequence will be executed from left-to-right or
top-to-bottom. The following example shows expressions being executed within
a code sequence:

In> {a := 1; Echo(a); b := 2; Echo(b); c := 3; Echo(c);}
Result: True
Side Effects>
1
2
3

Notice that all of the expressions were executed, and 1-3 was printed as a side
effect. Code sequences always return the result of the last expression
executed as the result of the whole sequence. In this case, True was
returned as the result because the last Echo(c) procedure returned True. If we
place another expression after the Echo(c) procedure, however, the
sequence will execute this new expression last and its result will be the
one returned by the sequence:

In> {a := 1; Echo(a); b := 2; Echo(b); c := 3; Echo(c); 2 + 2;}
Result: 4
Side Effects>
1
2
3

Finally, code sequences can have their contents placed on separate lines if
desired:

%mathpiper
{
 a := 1;

 Echo(a);

 b := 2;

 Echo(b);

 c := 3;

1287

1288
1289
1290
1291
1292
1293
1294
1295

1296
1297
1298
1299
1300
1301

1302
1303
1304
1305
1306
1307
1308

1309
1310
1311
1312
1313
1314

1315
1316

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

v.158 - 07/12/17 Introduction To Programming With MathPiper 52/136

 Echo(c);
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
. %/output

Code sequences are very powerful, and we will be discussing them further in
later sections.

9.7.2.1 Automatic Bracket, Parentheses, And Brace Match Indicating

In programming, most open brackets '[' have a close bracket ']', most open
parentheses '(' have a close parentheses ')', and most open braces '{' have a
close brace '}'. It is often difficult to make sure that each "open" character has a
matching "close" character and if any of these characters don't have a match,
then an error will be produced.

Thankfully, most programming text editors have a character match indicating
tool that will help locate problems. To try this tool, paste the following code into
a .mpws file and follow the directions that are present in its comments:

%mathpiper

/*
 Copy this code into a .mpws file. Then, place the cursor
 to the immediate right of any {, }, [,], (, or) character.
 You should notice that the match to this character is
 indicated by a rectangle being drawing around it.
*/

list := [1,2,3];

{
 Echo("Hello");

 Echo(list);
}

%/mathpiper

1329
1330

1331

1332
1333
1334
1335
1336
1337
1338
1339

1340
1341

1342

1343
1344
1345
1346
1347

1348
1349
1350

1351

1352
1353
1354
1355
1356
1357

1358

1359
1360

1361
1362

1363

v.158 - 07/12/17 Introduction To Programming With MathPiper 53/136

9.8 Strings

A string is a value that is used to hold text-based information. The typical
expression that is used to create a string consists of text that is enclosed
within double quotes. Text in a program's source code that is enclosed in
double quotes is called a string literal. Strings can be assigned to variables just
like numbers can, and strings can also be displayed using the Echo() procedure.
The following program assigns a string value to the variable 'a' and then prints it
to the user:

%mathpiper

a := "Hello, I am a string.";
Echo(a);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 Hello, I am a string.
. %/output

9.8.1 The MathPiper Console and MathPiper Folds Can Access The Same
Variables

A useful aspect of using MathPiper inside of MathPiperIDE is that variables that
are assigned inside of a %mathpiper fold are accessible inside of the
MathPiper console and variables that are assigned inside of the MathPiper
console are available inside of %mathpiper folds. For example, after the above
fold is executed, the string that has been assigned to variable 'a' can be
displayed in the MathPiper console:

In> a
Result: "Hello, I am a string."

9.8.2 Using Strings To Make Echo's Output Easier To Read

When the Echo() procedure is used to print the values of multiple variables, it is
often helpful to print some information next to each variable so that it is easier to
determine which value came from which Echo() procedure in the code. The
following program prints the name of the variable that each value came from
next to it in the side effects output:

%mathpiper

1364

1365
1366
1367
1368
1369
1370
1371

1372

1373
1374

1375

1376
1377
1378
1379
1380
1381

1382
1383

1384
1385
1386
1387
1388
1389

1390
1391

1392

1393
1394
1395
1396
1397

1398

v.158 - 07/12/17 Introduction To Programming With MathPiper 54/136

a := 1;
Echo("Variable a: ", a);

b := 2;
Echo("Variable b: ", b);

c := 3;
Echo("Variable c: ", c);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 Variable a: 1
 Variable b: 2
 Variable c: 3
. %/output

9.8.2.1 Combining Strings With The + Operator

If you need to combine two or more strings into one string, you can use the +
operator like this:

In> "A" + "B" + "C"
Result: "ABC"

In> "Hello " + "there!"
Result: "Hello there!"

9.8.2.2 WriteString()

The WriteString() procedure prints a string without showing the double quotes
that are around it. For example, here is the Write() procedure being used to
print the string "Hello":

In> Write("Hello")
Result: True
Side Effects:
"Hello"

Notice the double quotes? Here is how the WriteString() procedure prints
"Hello":

In> WriteString("Hello")
Result: True

1399
1400

1401
1402

1403
1404

1405

1406
1407
1408
1409
1410
1411
1412
1413

1414

1415
1416

1417
1418

1419
1420

1421

1422
1423
1424

1425
1426
1427
1428

1429
1430

1431
1432

v.158 - 07/12/17 Introduction To Programming With MathPiper 55/136

Side Effects:
Hello

9.8.2.3 Nl()

The Nl() (New Line) procedure is used with the + procedure to place newline
characters inside of strings:

In> WriteString("A" + Nl() + "B")
Result: True
Side Effects:
A
B

9.8.2.4 Space()

The Space() procedure is used to add spaces to printed output:

In> WriteString("A"); Space(5); WriteString("B")
Result: True
Side Effects:
A B

In> WriteString("A"); Space(10); WriteString("B")
Result: True
Side Effects:
A B

In> WriteString("A"); Space(20); WriteString("B")
Result: True
Side Effects:
A B

9.8.3 Accessing The Individual Letters/Characters In A String

Individual letters in a string (which are also called characters) can be accessed
by placing the character's position number (also called an index) inside of
brackets [] after the variable it is assigned to. A character's position is
determined by its distance from the left side of the string starting at 1. For
example, in the string "Hello", 'H' is at position 1, 'e' is at position 2, etc. The
following code shows individual characters in the above string being accessed:

In> a := "Hello, I am a string."
Result: "Hello, I am a string."

In> a[1]
Result: "H"

In> a[2]

1433
1434

1435

1436
1437

1438
1439
1440
1441
1442

1443

1444

1445
1446
1447
1448

1449
1450
1451
1452

1453
1454
1455
1456

1457

1458
1459
1460
1461
1462
1463

1464
1465

1466
1467

1468

v.158 - 07/12/17 Introduction To Programming With MathPiper 56/136

Result: "e"

In> a[3]
Result: "l"

In> a[4]
Result: "l"

In> a[5]
Result: "o"

9.8.3.1 Indexing Before The Beginning Of A String Or Past The End Of A String

Let's see what happens if an index is used that is less than 1 or greater than the
length of a given string. First, we will assign the string "Hello" to the variable
'a':

In> a := "Hello"
Result: "Hello"

Then, we'll index the character at position 1 and then the character at position 0:

In> a[1]
Result: "H"

In> a[0]
Result:
Exception: In procedure "StringMidGet" :
bad argument number 1(counting from 1) :

The offending argument aindex evaluated to 0
 In procedure: Nth,

Notice that using an index of 0 resulted in an error.

Next, let's access the character at position 5 (which is the 'o'), and finally the
character at position 6:

In> a[5]
Result: "o"

In> a[6]
Result:
Exception: String index out of range: 8

9.9 Comments

Source code can often be difficult to understand and therefore all programming
languages provide the ability for comments to be included in the code.

1469

1470
1471

1472
1473

1474
1475

1476

1477
1478
1479

1480
1481

1482

1483
1484

1485
1486
1487
1488

1489
1490

1491

1492
1493

1494
1495

1496
1497
1498

1499

1500
1501

v.158 - 07/12/17 Introduction To Programming With MathPiper 57/136

Comments are used to explain what the code near them is doing and they are
usually meant to be read by humans instead of being processed by a computer.
Therefore, comments are ignored by the computer when a program is executed.

There are two ways that MathPiper allows comments to be added to source code.
The first way is by placing two forward slashes // to the left of any text that is
meant to serve as a comment. The text from the slashes to the end of the line
the slashes are on will be treated as a comment. Here is a program that contains
comments that use slashes:

%mathpiper
//This is a comment.

x := 2; //The variable x becomes 2.

%/mathpiper

 %output,preserve="false"
 Result: 2
. %/output

When this program is executed, any text that starts with slashes is ignored.

The second way to add comments to a MathPiper program is by enclosing the
comments inside of slash-asterisk/asterisk-slash symbols /* */. This option is
useful when a comment is too large to fit on one line. Any text between these
symbols is ignored by the computer. This program shows a longer comment that
has been placed between these symbols:

%mathpiper

/*
 This is a longer comment and it uses
 more than one line. The following
 code assigns the number 3 to variable
 x and then returns it as a result.
*/

x := 3;

%/mathpiper

 %output,preserve="false"
 Result: 3
. %/output

1502
1503
1504

1505
1506
1507
1508
1509

1510
1511

1512

1513

1514
1515
1516

1517

1518
1519
1520
1521
1522

1523

1524
1525
1526
1527
1528
1529

1530

1531

1532
1533
1534

v.158 - 07/12/17 Introduction To Programming With MathPiper 58/136

9.10 How To Tell If MathPiper Has Crashed And What To Do If It Has

Sometimes code will be evaluated that has one or more unusual errors in it, and
the errors will cause MathPiper to "crash". Unfortunately, beginners are more
likely to crash MathPiper than more experienced programmers are because a
beginner's program is more likely to have errors in it. When MathPiper crashes,
no harm is done but it will not work correctly after that. The only way to
recover from a MathPiper crash is to exit MathPiperIDE and then
relaunch it. All the information in your buffers will be saved and preserved but
the contents of the console will not be. Be sure to copy the contents of the
console into a buffer and then save it before restarting.

One way to tell if MathPiperIDE has crashed is that it will indicate that there
are errors in lines of code that are actually fine. If you are receiving an
error in code that looks okay to you, simply restarting MathPiperIDE may fix the
problem. If you restart MathPiperIDE and the error is still present, this usually
means that there really is an error in the code.

9.11 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_9_exercises_<your first name>_<your last name>.mpws.
(Note: there are no spaces in this file name). For example, John Smith's
worksheet would be called:

book_1_section_9_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

9.11.1 Exercise 1
Change the precedence of the following expression using parentheses so that
it prints 20 instead of 14:

2 + 3 * 4

1535

1536
1537
1538
1539
1540
1541
1542
1543
1544

1545
1546
1547
1548
1549

1550

1551
1552
1553
1554

1555

1556
1557
1558
1559

1560

1561

1562

1563
1564

1565

1566
1567

1568

v.158 - 07/12/17 Introduction To Programming With MathPiper 59/136

9.11.2 Exercise 2
Place the following calculations into a single MathPiper fold, and then use
one Echo() procedure per variable to print the results of the calculations.
Put strings in the Echo() procedures that indicate which variable each
calculated value is assigned to:

a := (1+2+3+4+5);
b := (1-2-3-4-5);
c := (1*2*3*4*5);
d := (1/2/3/4/5);

9.11.3 Exercise 3
Place the following calculations into a single MathPiper fold, and then use
one Echo() procedure to print the results of all the calculations on a
single line (Remember, the Echo() procedure can print multiple values if
they are separated by commas.):

a := (2*2*2*2*2);
b := (2^5);
c := (_x^2 * _x^3);
d := (2^2 * 2^3);

9.11.4 Exercise 4
The following code assigns a string that contains all of the upper case
letters of the alphabet to the variable upper. Each of the three Echo()
procedures prints an index number and the letter that is at that position
in the string. Place this code into a fold and then continue the Echo()
procedures so that all 26 letters and their index numbers are printed

upper := "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Echo(1,upper[1]);
Echo(2,upper[2]);
Echo(3,upper[3]);

9.11.5 Exercise 5
Use Echo() procedures to print an index number and the character at this
position for the following string (this is similar to what was done in the
previous exercise.):

extra := ".!@#$%^&*() _+<>,?/{}[]|-=;";

Echo(1,extra[1]);
Echo(2,extra[2]);
Echo(3,extra[3]);

1569

1570
1571
1572
1573

1574
1575
1576
1577

1578

1579
1580
1581
1582

1583
1584
1585
1586

1587

1588
1589
1590
1591
1592

1593

1594
1595
1596

1597

1598
1599
1600

1601

1602
1603
1604

v.158 - 07/12/17 Introduction To Programming With MathPiper 60/136

9.11.6 Exercise 6
The following program uses strings and index numbers to print a person's
name. Create a program that uses the three strings from this program to
print the names of three of your favorite musical bands.

%mathpiper
/*
 This program uses strings and index numbers to print
 a person's name.
*/

upper := "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
lower := "abcdefghijklmnopqrstuvwxyz";
extra := ".!@#$%^&*() _+<>,?/{}[]|\-=";

//Print "Mary Smith.".
Echo(upper[13],lower[1],lower[18],lower[25],extra[12],upper[19],lower[13],l
ower[9],lower[20],lower[8],extra[1]);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 Mary Smith.
. %/output

1605

1606
1607
1608

1609
1610
1611
1612
1613

1614
1615
1616

1617
1618
1619

1620

1621
1622
1623
1624
1625
1626

v.158 - 07/12/17 Introduction To Programming With MathPiper 61/136

10 Lists

The list value type is designed to hold expressions in an ordered collection.
Lists are very flexible and they are one of the most heavily used value types in
MathPiper. Lists can hold expressions of any type, they can grow and
shrink as needed, and they can be nested. Expressions in a list can be
accessed by their position in the list (similar to the way that characters in a
string are accessed) and they can also be replaced by other expressions.

One way to create a list is by placing zero or more expressions separated by
commas inside of a pair of brackets []. When this notation is present in a
program's source code, it is called a list literal. In the following example, a list
is created that contains various expressions and then it is assigned to the
variable exampleList:

In> exampleList := [7,42,"Hello",1/2,_var]
Result: [7,42,"Hello",1/2,_var]

In> exampleList
Result: [7,42,"Hello",1/2,_var]

The number of expressions in a list can be determined with the Length()
procedure:

In> Length([7,42,"Hello",1/2,_var])
Result: 5

A single expression in a list can be accessed by placing a set of brackets [] to
the right of the variable that is assigned to the list and then putting the
expression's position number inside of the brackets (Note: the first expression
in the list is at position 1 counting from the left end of the list):

In> exampleList[1]
Result: 7

In> exampleList[2]
Result: 42

In> exampleList[3]
Result: "Hello"

In> exampleList[4]
Result: 1/2

In> exampleList[5]
Result: _var

1627

1628
1629
1630
1631
1632
1633

1634
1635
1636
1637
1638

1639
1640

1641
1642

1643
1644

1645
1646

1647
1648
1649
1650

1651
1652

1653
1654

1655
1656

1657
1658

1659
1660

v.158 - 07/12/17 Introduction To Programming With MathPiper 62/136

The 1st and 2nd expressions in this list are integers, the 3rd expression is a
string, the 4th expression is a rational number and the 5th expression is an
unassigned variable.

Lists can also hold other lists as shown in the following example:

In> exampleList := [20, 30, [31, 32, 33], 40]
Result: [20,30,[31,32,33],40]

In> exampleList[1]
Result: 20

In> exampleList[2]
Result: 30

In> exampleList[3]
Result: [31,32,33]

In> exampleList[4]
Result: 40

The expression in the 3rd position in the list is another list that contains the
integers 31, 32, and 33.

An expression in this second list can be accessed by two sets of brackets:

In> exampleList[3][2]
Result: 32

The 3 inside of the first set of brackets accesses the 3rd member of the first list
and the 2 inside of the second set of brackets accesses the 2nd member of the
second list.

10.1 Append!()
Append!(list, expression)

The Append!() procedure adds an expression to the end of a list:

In> testList := [21,22,23]
Result: [21,22,23]

In> Append!(testList, 24)
Result: [21,22,23,24]

1661
1662
1663

1664

1665
1666

1667
1668

1669
1670

1671
1672

1673
1674
1675

1676
1677

1678

1679
1680

1681
1682
1683

1684

1685

1686
1687

1688
1689

v.158 - 07/12/17 Introduction To Programming With MathPiper 63/136

11 Random Integer Values

It is often useful to use random integers in a program. For example, a program
may need to simulate the rolling of dice in a game. In this section, a procedure
for randomly obtaining nonnegative integers is discussed along with how to use
it to simulate the rolling of dice.

11.1 Obtaining Random Integers With The RandomInteger() Procedure

One way that a MathPiper program can generate random integers is with the
RandomInteger() procedure. The RandomInteger() procedure takes an integer
as an argument and it returns a random integer between 1 and the passed in
integer. The following example shows random integers between 1 and 5
inclusive being obtained from RandomInteger(). Inclusive here means that
both 1 and 5 are included in the range of random integers that may be returned.
If the word exclusive was used instead, this would mean that neither 1 nor 5
would be in the range.

In> RandomInteger(5)
Result: 4
In> RandomInteger(5)
Result: 5
In> RandomInteger(5)
Result: 4
In> RandomInteger(5)
Result: 2
In> RandomInteger(5)
Result: 3
In> RandomInteger(5)
Result: 5
In> RandomInteger(5)
Result: 2
In> RandomInteger(5)
Result: 2
In> RandomInteger(5)
Result: 1
In> RandomInteger(5)
Result: 2

Random integers between 1 and 100 can be generated by passing 100 to
RandomInteger():

In> RandomInteger(100)
Result: 15
In> RandomInteger(100)
Result: 14

1690

1691
1692
1693
1694

1695

1696
1697
1698
1699
1700
1701
1702
1703

1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723

1724
1725

1726
1727
1728
1729

v.158 - 07/12/17 Introduction To Programming With MathPiper 64/136

In> RandomInteger(100)
Result: 82
In> RandomInteger(100)
Result: 93
In> RandomInteger(100)
Result: 32

A range of random integers that does not start with 1 can also be generated by
using the two argument version of RandomInteger(). For example, random
integers between 25 and 75 can be obtained by passing RandomInteger() the
lowest integer in the range and the highest one:

In> RandomInteger(25, 75)
Result: 28
In> RandomInteger(25, 75)
Result: 37
In> RandomInteger(25, 75)
Result: 58
In> RandomInteger(25, 75)
Result: 50
In> RandomInteger(25, 75)
Result: 70

11.2 Simulating The Rolling Of Dice

The following example shows the simulated rolling of a single six sided die using
the RandomInteger() procedure:

In> RandomInteger(6)
Result: 5
In> RandomInteger(6)
Result: 6
In> RandomInteger(6)
Result: 3
In> RandomInteger(6)
Result: 2
In> RandomInteger(6)
Result: 5

Code that simulates the rolling of two 6 sided dice can be evaluated in the
MathPiper console by placing it within a code sequence. The following code
outputs the sum of the two simulated dice:

In> {a := RandomInteger(6); b := RandomInteger(6); a + b;}
Result: 6
In> {a := RandomInteger(6); b := RandomInteger(6); a + b;}
Result: 12
In> {a := RandomInteger(6); b := RandomInteger(6); a + b;}
Result: 6

1730
1731
1732
1733
1734
1735

1736
1737
1738
1739

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

1750

1751
1752

1753
1754
1755
1756
1757
1758
1759
1760
1761
1762

1763
1764
1765

1766
1767
1768
1769
1770
1771

v.158 - 07/12/17 Introduction To Programming With MathPiper 65/136

In> {a := RandomInteger(6); b := RandomInteger(6); a + b;}
Result: 4
In> {a := RandomInteger(6); b := RandomInteger(6); a + b;}
Result: 3
In> {a := RandomInteger(6); b := RandomInteger(6); a + b;}
Result: 8

Now that we have the ability to simulate the rolling of two 6 sided dice, it would
be interesting to determine if some sums of these dice occur more frequently
than other sums. What we would like to do is to roll these simulated dice
hundreds (or even thousands) of times and then analyze the sums that were
produced. We don't have the programming capability to easily do this yet, but
after we finish the section on While loops, we will.

11.3 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_11_exercises_<your first name>_<your last name>.mpws
(Note: there are no spaces in this file name). For example, John Smith's
worksheet would be called:

book_1_section_11_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

11.3.1 Exercise 1
Create a program that will roll two simulated dice 20 times, and print the
results of each of these rolls.

1772
1773
1774
1775
1776
1777

1778
1779
1780
1781
1782
1783

1784

1785
1786
1787
1788

1789

1790
1791
1792
1793

1794

1795

1796

1797
1798

1799

1800
1801

v.158 - 07/12/17 Introduction To Programming With MathPiper 66/136

12 Making Decisions

The simple programs that have been discussed up to this point show some of the
power that software makes available to programmers. However, these programs
are limited in their problem solving ability because they are unable to make
decisions. This section shows how programs that have the ability to make
decisions are able to solve a wider range of problems than programs that can't
make decisions.

12.1 Relational Operators

A program's decision making ability is based on a set of special operators that
are called relational operators. Another name for them is comparison
operators, but we will call them relational operators in this book. A relational
operator is an operator that is used to compare two values. Expressions that
contain relational operators return a boolean value and a boolean value is one
that can only be True or False. When the words "True" and "False" are present
in a program's source code, they are called boolean literals. In case you are
curious about the strange name, boolean values come from the area of
mathematics called boolean logic. This logic was created by a mathematician
named George Boole and this is where the name boolean came from. Table 2
shows the relational operators that MathPiper uses:

Operator Description

 x =? y Returns True if the two values are equal and False if they are not equal.
Notice that =? performs a comparison and not an assignment like :=
does.

 x !=? y Returns True if the values are not equal and False if they are equal.

 x <? y Returns True if the left value is less than the right value and False if the
left value is not less than the right value.

 x <=? y Returns True if the left value is less than or equal to the right value and
False if the left value is not less than or equal to the right value.

 x >? y Returns True if the left value is greater than the right value and False if
the left value is not greater than the right value.

 x >=? y Returns True if the left value is greater than or equal to the right value
and False if the left value is not greater than or equal to the right value.

Table 2: Relational Operators

This example shows some of these relational operators being evaluated in the
MathPiper console:

1802

1803
1804
1805
1806
1807
1808

1809

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820

1821
1822

v.158 - 07/12/17 Introduction To Programming With MathPiper 67/136

In> 1 <? 2
Result: True

In> 4 >? 5
Result: False

In> 8 >=? 8
Result: True

In> 5 <=? 10
Result: True

The following examples show each of the relational operators in Table 2 being
used to compare values that have been assigned to variables x and y:

%mathpiper

// Example 1.
x := 2;
y := 3;

Echo(x, "=? ", y, ": ", x =? y);
Echo(x, "!=? ", y, ": ", x !=? y);
Echo(x, "<? ", y, ": ", x <? y);
Echo(x, "<=? ", y, ": ", x <=? y);
Echo(x, ">? ", y, ": ", x >? y);
Echo(x, ">=? ", y, ": ", x >=? y);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 2 =? 3 : False
 2 !=? 3 : True
 2 <? 3 : True
 2 <=? 3 : True
 2 >? 3 : False
 2 >=? 3 : False
. %/output

%mathpiper

 // Example 2.
 x := 2;
 y := 2;

 Echo(x, "=? ", y, ": ", x =? y);

1823
1824

1825
1826

1827
1828

1829
1830

1831
1832

1833

1834
1835
1836

1837
1838
1839
1840
1841
1842

1843

1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854

1855

1856
1857
1858

1859

v.158 - 07/12/17 Introduction To Programming With MathPiper 68/136

 Echo(x, "!=? ", y, ": ", x !=? y);
 Echo(x, "<? ", y, ": ", x <? y);
 Echo(x, "<=? ", y, ": ", x <=? y);
 Echo(x, ">? ", y, ": ", x >? y);
 Echo(x, ">=? ", y, ": ", x >=? y);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 2 =? 2 : True
 2 !=? 2 : False
 2 <? 2 : False
 2 <=? 2 : True
 2 >? 2 : False
 2 >=? 2 : True
. %/output

%mathpiper

// Example 3.
x := 3;
y := 2;

Echo(x, "=? ", y, ": ", x =? y);
Echo(x, "!=? ", y, ": ", x !=? y);
Echo(x, "<? ", y, ": ", x <? y);
Echo(x, "<=? ", y, ": ", x <=? y);
Echo(x, ">? ", y, ": ", x >? y);
Echo(x, ">=? ", y, ": ", x >=? y);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 3 =? 2 : False
 3 !=? 2 : True
 3 <? 2 : False
 3 <=? 2 : False
 3 >? 2 : True
 3 >=? 2 : True
. %/output

Relational operators are placed at a lower level of precedence than the other
operators we have covered to this point:

1860
1861
1862
1863
1864

1865

1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876

1877

1878
1879
1880

1881
1882
1883
1884
1885
1886

1887

1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898

1899
1900

v.158 - 07/12/17 Introduction To Programming With MathPiper 69/136

() Parentheses are evaluated from the inside out.

^ Exponents (right associative).

/ Then division (left associative).

* Then multiplication (left associative).

% Then the remainder operator (left associative).

+, − Addition and subtraction (left associative).

=?,!=?,<?,<=?,>?,>=? Finally, relational operators are evaluated (left
associative).

12.2 Predicate Expressions

Expressions that return either True or False are called "predicate" expressions.
By themselves, predicate expressions are not very useful. They only become so
when they are used with special decision making procedures, like the If()
procedure (which is discussed in the next section).

12.3 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_12a_exercises_<your first name>_<your last
name>.mpws. (Note: there are no spaces in this file name). For example,
John Smith's worksheet would be called:

book_1_section_12a_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

12.3.1 Exercise 1

Open a MathPiper session and evaluate the following predicate expressions:

1901

1902

1903

1904

1905

1906

1907
1908

1909

1910
1911
1912
1913

1914

1915
1916
1917
1918

1919

1920
1921
1922
1923

1924

1925

1926

1927
1928

1929

1930

v.158 - 07/12/17 Introduction To Programming With MathPiper 70/136

In> 3 =? 3

In> 3 =? 4

In> 3 <? 4

In> 3 !=? 4

In> -3 <? 4

In> 4 >=? 4

In> 1/2 <? 1/4

In> 15/23 <? 122/189

/*In the following two expressions, notice that 1/2 is not considered to be
equal to .5 unless it is converted to a numerical value first.*/

In> 1/2 =? .5

In> NM(1/2) =? .5

12.3.2 Exercise 2

Come up with 10 predicate expressions of your own and evaluate them in the
MathPiper console.

12.4 Making Decisions With The If() Procedure & Predicate Expressions

Most programming languages have the ability to make decisions, and the most
commonly used procedure for making decisions in MathPiper is the If()
procedure:

With code sequence body:

If(predicate)
{
 body_expressions
}

Without code sequence body:

If(predicate) body_expression;

The expression or expressions that are contained in a If() procedure are called its
"body", and all procedures that have bodies are called "bodied" procedures. If a
body contains more than one expression, then these expressions need to be

Notice that in bodied procedures, the ; is
placed after the closing }, not after the
closing).

1931

1932

1933

1934

1935

1936

1937

1938

1939
1940

1941

1942

1943

1944
1945

1946

1947
1948
1949

1950

1951
1952
1953
1954

1955

1956

1957
1958
1959

v.158 - 07/12/17 Introduction To Programming With MathPiper 71/136

placed within a code sequence (code sequences were discussed in an earlier
section). What a procedure's body is will become clearer after studying some
example programs.

The way the If() procedure works is it evaluates the "predicate" expression that
is passed to it as an argument, and then it looks at the value that the expression
returns. If this value is True, the body of the If() procedure is executed. If the
predicate expression evaluates to False, the body is not executed. (Note: any
procedure that accepts a predicate expression as a parameter can also accept
the boolean values True and False).

The following program uses an If() procedure to determine if the value in
variable number is greater than 5. If number is greater than 5, the program will
echo "Greater" and then "End of program":

%mathpiper

number := 6;

If(number >? 5)
{
 Echo(number, "is greater than 5.");
}

Echo("End of program.");

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 6 is greater than 5.
 End of program.
. %/output

In this program, number has been set to 6 and therefore the expression number
>? 5 is True. When the If() procedures evaluates the predicate expression
and determines it is True, it then executes the Echo() procedure that is in its
body. The second Echo() procedure at the bottom of the program prints "End
of program" regardless of what the If() procedure does.

Here is the same program except that number has been set to 4 instead of 6:

%mathpiper

number := 4;

If(number >? 5)
{

1960
1961
1962

1963
1964
1965
1966
1967
1968

1969
1970
1971

1972

1973

1974
1975
1976
1977

1978

1979

1980
1981
1982
1983
1984
1985
1986

1987
1988
1989
1990
1991

1992

1993

1994

1995
1996

v.158 - 07/12/17 Introduction To Programming With MathPiper 72/136

 Echo(number, "is greater than 5.");
}

Echo("End of program.");

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 End of program.
. %/output

This time the expression number >? 5 returns a value of False, which causes
the If() procedure to not execute its body.

This version of the program contains an If() procedure that does not use a code
sequence as a body:

%mathpiper

number := 4;

If(number >? 5) Echo(number, "is greater than 5.");

Echo("End of program.");

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 End of program.
. %/output

If the := operator is used in the body of an If() procedure that does not use a
code sequence for its body, the unbodied expression must be placed within
parentheses:

%mathpiper

number := 6;

If(number >? 5) (number := 0);

1997
1998

1999

2000

2001
2002
2003
2004
2005
2006

2007
2008

2009
2010

2011

2012

2013

2014

2015

2016
2017
2018
2019
2020
2021

2022
2023
2024

2025

2026

2027

v.158 - 07/12/17 Introduction To Programming With MathPiper 73/136

number;

%/mathpiper

 %output,preserve="false"
 Result: 0

. %/output

12.4.1 One If() Procedure Used With One Else Operator

An If() procedure can be used with an Else operator to evaluate one body if a
predicate expression is True, and an alternative body if the predicate expression
is False. The format for If/Else code is as follows:

If(predicate)
{
 evaluate_this_body_if_True.
}
Else
{
 evaluate_this_body_if_False
}

The following program prints “4 is NOT greater than 5” because the predicate x
>? 5 is False:

%mathpiper

x := 4;

If(x >? 5)
{
 Echo(x,"is greater than 5.");
}
Else
{
 Echo(x,"is NOT greater than 5.");
}

Echo("End of program.");

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 4 is NOT greater than 5.

2028

2029

2030
2031

2032

2033

2034
2035
2036

2037
2038
2039
2040
2041
2042
2043
2044

2045
2046

2047

2048

2049
2050
2051
2052
2053
2054
2055
2056

2057

2058

2059
2060
2061
2062
2063

v.158 - 07/12/17 Introduction To Programming With MathPiper 74/136

 End of program.
. %/output

12.5 The &?, |?, And !? Boolean Operators

12.5.1 The &? "And" Operator

Sometimes a programmer needs to check if two expressions are True and one
way to do this is with the &? operator (which is read "and"). This is the calling
format for the &? operator:

expression1 &? expression2

If both of these expressions return a value of True, the &? operator will also
return a True. However, if either of the expressions return a False, then the &?
operator will return a False. This can be seen in the following example:

In> True &? True
Result: True

In> True &? False
Result: False

In> False &? True
Result: False

In> False &? False
Result: False

In> True &? True &? True &? True
Result: True

The following program demonstrates the &? operator being used:

%mathpiper

a := 7;
b := 9;

Echo("1: ", a <? 5 &? b <? 10);
Echo("2: ", a >? 5 &? b >? 10);
Echo("3: ", a <? 5 &? b >? 10);
Echo("4: ", a >? 5 &? b <? 10);

If(a >? 5 &? b <? 10)
{

2064
2065

2066

2067

2068
2069
2070

2071
2072
2073

2074
2075

2076
2077

2078
2079

2080
2081

2082
2083

2084

2085

2086
2087

2088
2089
2090
2091

2092
2093

v.158 - 07/12/17 Introduction To Programming With MathPiper 75/136

 Echo("These expressions are both true.");
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1: False
 2: False
 3: False
 4: True
 These expressions are both true.
. %/output

12.5.2 The |? "Or" Operator

The |? operator (which is read "or") is similar to the &? operator in that it only
works with predicate expressions. However, instead of requiring that both
expressions be True in order to return a True, |? will return a True if one or
both expressions are True.

Here is the calling format for |?:

expression1 |? expression2

This example shows the |? operator being used:

In> True |? True
Result: True

In> True |? False
Result: True

In> False |? True
Result: True

In> False |? False
Result: False

In> False |? False |? True |? False
Result: True

The following program also demonstrates the |? operator being used:

%mathpiper

2094
2095

2096

2097
2098
2099
2100
2101
2102
2103
2104
2105
2106

2107

2108
2109
2110
2111

2112

2113

2114
2115

2116
2117

2118
2119

2120
2121

2122
2123

2124

2125

v.158 - 07/12/17 Introduction To Programming With MathPiper 76/136

a := 7;
b := 9;

Echo("1: ", a <? 5 |? b <? 10);
Echo("2: ", a >? 5 |? b >? 10);
Echo("3: ", a >? 5 |? b <? 10);
Echo("4: ", a <? 5 |? b >? 10);

If(a <? 5 |? b <? 10)
{
 Echo("At least one of these expressions is true.");
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1: True
 2: True
 3: True
 4: False
 At least one of these expressions is true.
. %/output

12.5.3 The !? "Not" Operator

The !? operator (which is read "not") works with predicate expressions like the
&? and |? operators do, except it can only accept one expression as input. The
way !? works is that it changes a True value to a False value and a False value
to a True value. Here is the !? operator's calling format:

!? expression

These are examples of Not> being used:

In> !? True
Result: False

In> !? False
Result: True

The following is a program that uses the !? operator:

%mathpiper

2126
2127

2128
2129
2130
2131

2132
2133
2134
2135

2136

2137
2138
2139
2140
2141
2142
2143
2144
2145
2146

2147

2148
2149
2150
2151

2152

2153
2154

2155
2156

2157

2158

v.158 - 07/12/17 Introduction To Programming With MathPiper 77/136

Echo("3 =? 3 is ", 3 =? 3);

Echo("!? 3 =? 3 is ", !? 3 =? 3);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 3 =? 3 is True
 !? 3 =? 3 is False
. %/output

12.6 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_12c_exercises_<your first name>_<your last
name>.mpws. (Note: there are no spaces in this file name). For example,
John Smith's worksheet would be called:

book_1_section_12c_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

12.6.1 Exercise 1
Write a program that uses the RandomInteger() procedure to simulate the
flipping of a coin (Hint: you can use 1 to represent a head and 2 to
represent a tail.) Use predicate expressions, the If() procedure, and the
Echo() procedure to print the string "The coin came up heads." or the
string "The coin came up tails.", depending on what the simulated coin flip
came up as when the code was executed.

2159

2160

2161

2162
2163
2164
2165
2166
2167
2168

2169

2170
2171
2172
2173

2174

2175
2176
2177
2178

2179

2180

2181

2182
2183

2184

2185
2186
2187
2188
2189
2190

v.158 - 07/12/17 Introduction To Programming With MathPiper 78/136

12.6.2 Exercise 2
The following program simulates the rolling of two dice and prints a
message if both of the two dice come up less than or equal to 3. Create a
similar program that simulates the flipping of two coins and print the
message "Both coins came up heads." if both coins come up heads.

%mathpiper
/*
 This program simulates the rolling of two dice and prints a message if
 both of the two dice come up less than or equal to 3.
*/

die1 := RandomInteger(6);
die2 := RandomInteger(6);

Echo("Die1: ", die1, " Die2: ", die2);
NewLine();

If(die1 <=? 3 &? die2 <=? 3)
{
 Echo("Both dice came up <=? to 3.");
}

%/mathpiper

12.6.3 Exercise 3
The following program simulates the rolling of two dice and prints a
message if either of the two dice come up less than or equal to 3. Create
a similar program that simulates the flipping of two coins and print the
message "At least one coin came up heads." if at least one coin comes up
heads.

%mathpiper
/*
 This program simulates the rolling of two dice and prints a message if
 either of the two dice come up less than or equal to 3.
*/

die1 := RandomInteger(6);
die2 := RandomInteger(6);

Echo("Die1: ", die1, " Die2: ", die2);
NewLine();

If(die1 <=? 3 |? die2 <=? 3)
{
 Echo("At least one die came up <=? 3.");
}

%/mathpiper

2191

2192
2193
2194
2195

2196
2197
2198
2199
2200

2201
2202

2203
2204

2205
2206
2207
2208

2209

2210

2211
2212
2213
2214
2215

2216
2217
2218
2219
2220

2221
2222

2223
2224

2225
2226
2227
2228

2229

v.158 - 07/12/17 Introduction To Programming With MathPiper 79/136

13 The While() And Until() Looping Procedures

13.1 The While() Looping Procedure

Many kinds of machines, including computers, derive much of their power from
the principle of repeated cycling. Repeated cycling in a MathPiper program
means to execute one or more expressions over and over again and this process
is called "looping". MathPiper provides a number of ways to implement loops
in a program and these ways range from straight-forward to subtle.

We will begin discussing looping in MathPiper by starting with the straight-
forward While procedure. The calling format for the While procedure is as
follows:

While(predicate)
{
 body_expressions
}

The While procedure is similar to the If() procedure, except it will repeatedly
execute the expressions in its body as long as its "predicate" expression is True.
As soon as the predicate expression returns a False, the While() procedure skips
the expressions it contains and execution continues with the expression that
immediately follows the While() procedure (if there is one).

13.1.1 Printing The Integers From 1 to 10

The following program uses a While() procedure to print the integers from 1 to
10:

%mathpiper

// This program prints the integers from 1 to 10.

/*
 Initialize the variable count to 1
 outside of the While "loop".
*/
count := 1;

While(count <=? 10)
{
 Echo(count);

 count := (count + 1); //Increment count by 1.

Notice that in bodied procedures, the ; is placed
after the closing }, not after the closing).

2230

2231

2232
2233
2234
2235
2236

2237
2238
2239

2240
2241
2242
2243

2244
2245
2246
2247
2248

2249

2250
2251

2252

2253

2254
2255
2256
2257
2258

2259
2260
2261
2262
2263

v.158 - 07/12/17 Introduction To Programming With MathPiper 80/136

}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
. %/output

In this program, a single variable called count is created. It is used to tell the
Echo() procedure which integer to print, and it is also used in the predicate
expression that determines if the While() procedure should continue to loop or
not.

When the program is executed, 1 is assigned to count, and then the While()
procedure is called. Notice that 1 is assigned to the variable count above the
While loop. Assigning an initial value to a variable is called initializing the
variable and in this case, count needs to be initialized before it is used in the
While() procedure. The predicate expression count <=? 10 becomes 1 <=? 10
and, since 1 is indeed less than or equal to 10, a value of True is returned by the
predicate expression.

The While() procedure sees that the predicate expression returned a True and
therefore it executes all of the expressions inside of its body from top to bottom.

The Echo() procedure prints the current contents of count (which is 1) and then
the expression count := (count + 1) is executed.

The expression count := (count + 1) is a standard expression form that is used
in many programming languages. Each time an expression in this form is
evaluated, it increases the variable it contains by 1. Another way to describe
the effect this expression has on count is to say that it increments count by 1.

In this case count contains 1 and, after the expression is evaluated, count
contains 2.

After the last expression inside the body of the While() procedure is executed,
the While() procedure reevaluates its predicate expression to determine whether
it should continue looping or not. Since count is 2 at this point, the predicate
expression returns True and the code inside the body of the While() procedure is

2264

2265

2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280

2281
2282
2283
2284

2285
2286
2287
2288
2289
2290
2291

2292
2293

2294
2295

2296
2297
2298
2299

2300
2301

2302
2303
2304
2305

v.158 - 07/12/17 Introduction To Programming With MathPiper 81/136

executed again. This loop will be repeated until count is incremented to 11 and
the predicate expression returns False.

13.1.2 Placing The Integers From 1 to 50 In A List

The previous program can be adjusted in a number of ways to achieve different
results. For example, the following program places the integers from 1 to 50 into
a list by changing the 10 in the predicate expression to 50 and changing the
Write procedure to a Append!() procedure.

%mathpiper

// Place the integers from 1-50 in a list.

integersList := [];

count := 1;

While(count <=? 50)
{
 Append!(integersList, count);

 count := (count + 1); //Increment count by 1.
}

integersList;

%/mathpiper

 %output
 Result:
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28
,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]
. %/output

(Note: In MathPiperIDE, the above numbers will all be on a single line.)

13.1.3 Printing The Odd Integers From 1 To 99

The following program prints the odd integers from 1 to 99 by changing the
increment value in the increment expression from 1 to 2:

%mathpiper

//Print the odd integers from 1 to 99.

x := 1;

2306
2307

2308

2309
2310
2311
2312

2313

2314

2315

2316

2317
2318
2319
2320
2321
2322

2323

2324

2325
2326
2327
2328
2329

2330

2331

2332
2333

2334

2335

2336

v.158 - 07/12/17 Introduction To Programming With MathPiper 82/136

While(x <=? 100)
{
 Write(x,',);

 x := (x + 2); //Increment x by 2.
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,
 45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,
 85,87,89,91,93,95,97,99
. %/output

13.1.4 Placing The Integers From 1 To 100 In Reverse Order Into A List

Finally, the following program prints the integers from 1 to 100 in reverse order:

%mathpiper

// Place the integers from 1 to 100 in reverse order into a list.

resultList := [];

x := 100;

While(x >=? 1)
{
 Append!(resultList, x);

 x := (x - 1); //Decrement x by 1.
}

resultList;

%/mathpiper

 %output
 Result:
[100,99,98,97,96,95,94,93,92,91,90,89,88,87,86,85,84,83,82,81,80,79,78,77,7
6,75,74,73,72,71,70,69,68,67,66,65,64,63,62,61,60,59,58,57,56,55,54,53,52,5
1,50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,2
6,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
. %/output

2337
2338
2339

2340
2341

2342

2343
2344
2345
2346
2347
2348
2349
2350

2351

2352

2353

2354

2355

2356

2357
2358
2359

2360
2361

2362

2363

2364
2365
2366
2367
2368
2369
2370

v.158 - 07/12/17 Introduction To Programming With MathPiper 83/136

In order to achieve the reverse ordering, this program had to initialize (which
means to assign an initial value to a variable) x to 100, check to see if x was
greater than or equal to 1 (x >=? 1), and decrement x by subtracting 1
from it instead of adding 1 to it.

13.2 The Until() Looping Procedure

The While() procedure evaluates the predicate expression that is passed to it,
and then it evaluates its body if the predicate is True, and it does not evaluate its
body if its predicate is False. The Until() procedure is similar to the While()
procedure, except it evaluates its body before it evaluates the predicate
expression that is passed to it, and it continues looping until the predicate
expression becomes True instead of False. Since Until() evaluates its body
before it evaluates the predicate expression, its body is always evaluated at least
once.

The calling format for the Until procedure is as follows:

Until(predicate)
{
 body_expressions
}

13.2.1 Printing The Integers From 1 to 10

The following program uses a Until() procedure to print the integers from 1 to
10:

%mathpiper

// This program prints the integers from 1 to 10.

/*
 Initialize the variable count to 1
 outside of the Until "loop".
*/
count := 1;

Until(count =? 11)
{
 Echo(count);

 count := (count + 1); //Increment count by 1.
}

%/mathpiper

Notice that in bodied procedures, the ; is placed
after the closing }, not after the closing).

2371
2372
2373
2374

2375

2376
2377
2378
2379
2380
2381
2382
2383

2384

2385
2386
2387
2388

2389

2390
2391

2392

2393

2394
2395
2396
2397
2398

2399
2400
2401
2402
2403
2404

2405

v.158 - 07/12/17 Introduction To Programming With MathPiper 84/136

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
. %/output

13.3 Expressions Inside Of Code Sequences Are Indented

In the programs in the previous sections that use While loops, notice that the
expressions that are inside of the While() procedure's code sequence are
indented. These expressions do not need to be indented to execute properly,
but doing so makes the program easier to read.

13.4 Long-Running Loops, Infinite Loops, & Interrupting Execution

It is easy to create a loop that will execute a large number of times, or even an
infinite number of times, either on purpose or by mistake. When you execute
a program that contains an infinite loop, it will run until you tell MathPiper to
interrupt its execution. This is done by opening the MathPiper console and
then pressing the "Halt Evaluation" button, which in the upper left corner of
the console.

Let's experiment with the Halt Evaluation button by executing a program that
contains an infinite loop and then stopping it:

%mathpiper

//Infinite loop example program.

x := 1;
While(x <? 10)
{
 x := 3; //Oops, x is not being incremented!.
}

%/mathpiper

2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420

2421

2422
2423
2424
2425

2426

2427
2428
2429
2430
2431
2432

2433
2434

2435

2436

2437
2438
2439
2440
2441

2442

v.158 - 07/12/17 Introduction To Programming With MathPiper 85/136

 %output,preserve="false"
 Processing...
. %/output

Since the contents of x is never changed inside the loop, the expression x <? 10
always evaluates to True, which causes the loop to continue looping. Notice that
the %output fold contains the word "Processing..." to indicate that the program
is still running the code.

Execute this program now and then interrupt it using the Halt Evaluation
button. When the program is interrupted, the %output fold will display the
message "User halted evaluation" to indicate that the program was
interrupted. After a program has been interrupted, the program can be edited
and then rerun.

13.5 A Program That Simulates Rolling Two Dice 50 Times

The following program is larger than the previous programs that have been
discussed in this book, but it is also more interesting and more useful. It uses a
While() loop to simulate the rolling of two dice 50 times, and it records how
many times each possible sum has been rolled so that this data can be printed.
The comments in the code explain what each part of the program does.
(Remember, if you copy this program to a MathPiperIDE worksheet, you can use
rectangular selection mode to easily remove the line numbers).

%mathpiper
/*
 This program simulates rolling two dice 50 times.
*/

/*
 These variables are used to record how many times
 a possible sum of two dice has been rolled. They are
 all initialized to 0 before the simulation begins.
*/
numberOfTwosRolled := 0;
numberOfThreesRolled := 0;
numberOfFoursRolled := 0;
numberOfFivesRolled := 0;
numberOfSixesRolled := 0;
numberOfSevensRolled := 0;
numberOfEightsRolled := 0;
numberOfNinesRolled := 0;
numberOfTensRolled := 0;
numberOfElevensRolled := 0;
numberOfTwelvesRolled := 0;

2443
2444
2445

2446
2447
2448
2449

2450
2451
2452
2453
2454

2455

2456
2457
2458
2459
2460
2461
2462

2463
2464
2465
2466

2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482

v.158 - 07/12/17 Introduction To Programming With MathPiper 86/136

Echo("These are the rolls:");

//This variable keeps track of the number of the current roll.
roll := 1;

/*
 The simulation is performed inside of this While loop. The number of
 times the dice will be rolled can be changed by changing the number 50,
 which is in the While procedure's predicate expression.
*/
While(roll <=? 50)
{
 //Roll the dice.
 die1 := RandomInteger(6);
 die2 := RandomInteger(6);

 //Calculate the sum of the two dice.
 rollSum := (die1 + die2);

 /*
 Print the sum that was rolled. Note: if a large number of rolls
 is going to be performed (say >? 1000), it would be best to comment
 out this Write() procedure so that it does not put too much text
 into the output fold.
 */
 Write(rollSum,',);

 /*
 These If() procedures determine which sum was rolled and then add
 1 to the variable that is keeping track of the number of times
 that sum was rolled. The bodies of these If() procedures are not in
 code sequences.
 */
 If(rollSum =? 2) (numberOfTwosRolled := (numberOfTwosRolled + 1));
 If(rollSum =? 3) (numberOfThreesRolled := (numberOfThreesRolled + 1));
 If(rollSum =? 4) (numberOfFoursRolled := (numberOfFoursRolled + 1));
 If(rollSum =? 5) (numberOfFivesRolled := (numberOfFivesRolled + 1));
 If(rollSum =? 6) (numberOfSixesRolled := (numberOfSixesRolled + 1));
 If(rollSum =? 7) (numberOfSevensRolled := (numberOfSevensRolled + 1));
 If(rollSum =? 8) (numberOfEightsRolled := (numberOfEightsRolled + 1));
 If(rollSum =? 9) (numberOfNinesRolled := (numberOfNinesRolled + 1));
 If(rollSum =? 10) (numberOfTensRolled := (numberOfTensRolled + 1));
 If(rollSum =? 11) (numberOfElevensRolled := (numberOfElevensRolled+1));
 If(rollSum =? 12) (numberOfTwelvesRolled := (numberOfTwelvesRolled+1));

2483

2484
2485

2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528

v.158 - 07/12/17 Introduction To Programming With MathPiper 87/136

 //Increment the roll variable to the next roll number.
 roll := (roll + 1);
}

//Print the contents of the sum count variables for visual analysis.
NewLine();
NewLine();
Echo("Number of Twos rolled: ", numberOfTwosRolled);
Echo("Number of Threes rolled: ", numberOfThreesRolled);
Echo("Number of Fours rolled: ", numberOfFoursRolled);
Echo("Number of Fives rolled: ", numberOfFivesRolled);
Echo("Number of Sixes rolled: ", numberOfSixesRolled);
Echo("Number of Sevens rolled: ", numberOfSevensRolled);
Echo("Number of Eights rolled: ", numberOfEightsRolled);
Echo("Number of Nines rolled: ", numberOfNinesRolled);
Echo("Number of Tens rolled: ", numberOfTensRolled);
Echo("Number of Elevens rolled: ", numberOfElevensRolled);
Echo("Number of Twelves rolled: ", numberOfTwelvesRolled);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side effects:
 These are the rolls:
 4,8,6,4,6,9,7,11,9,3,11,6,11,7,11,4,7,7,8,7,3,6,7,7,7,12,4,

 12,7,8,12,6,8,10,10,5,9,8,4,5,3,5,7,7,4,6,7,7,5,8,

 Number of Twos rolled: 0
 Number of Threes rolled: 3
 Number of Fours rolled: 6
 Number of Fives rolled: 4
 Number of Sixes rolled: 6
 Number of Sevens rolled: 13
 Number of Eights rolled: 6
 Number of Nines rolled: 3
 Number of Tens rolled: 2
 Number of Elevens rolled: 4
 Number of Twelves rolled: 3
. %/output

13.6 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_13_exercises_<your first name>_<your last name>.mpws.
(Note: there are no spaces in this file name). For example, John Smith's
worksheet would be called:

2529
2530
2531
2532

2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546

2547

2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567

2568

2569
2570
2571
2572

v.158 - 07/12/17 Introduction To Programming With MathPiper 88/136

book_1_section_13_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

13.6.1 Exercise 1
Create a program that uses a While loop to print the even integers from 2
to 50 inclusive.

13.6.2 Exercise 2
Create a program that prints all the multiples of 5 between 5 and 50
inclusive.

13.6.3 Exercise 3
Create a program that simulates the flipping of a single coin 500 times.
Print the number of times the coin came up heads and the number of times it
came up tails after the loop is finished executing.

2573

2574
2575
2576
2577

2578

2579

2580

2581
2582

2583

2584
2585

2586

2587
2588

2589

2590
2591
2592

v.158 - 07/12/17 Introduction To Programming With MathPiper 89/136

14 Predicate Procedures

A predicate procedure is a procedure that either returns True or False. Most
predicate procedures in MathPiper have names that end with a question mark
"?". For example, Even?(), Odd?(), Integer?(), etc. The following examples
show some of the predicate procedures that are in MathPiper:

In> Even?(4)
Result: True

In> Even?(5)
Result: False

In> Zero?(0)
Result: True

In> Zero?(1)
Result: False

In> NegativeInteger?(-1)
Result: True

In> NegativeInteger?(1)
Result: False

In> Prime?(7)
Result: True

In> Prime?(100)
Result: False

There is also an Assigned?() predicate procedure that can be used to determine
whether or not a value is assigned to a given variable:

In> State()
Result: []

In> Assigned?(a)
Result: False

In> a := 1
Result: 1

In> Assigned?(a)
Result: True

In> Unassign(a)
Result: True

2593

2594
2595
2596
2597

2598
2599

2600
2601

2602
2603

2604
2605

2606
2607

2608
2609

2610
2611

2612
2613

2614
2615

2616
2617

2618
2619

2620
2621

2622
2623

2624
2625

v.158 - 07/12/17 Introduction To Programming With MathPiper 90/136

In> State
Result: []

In> Assigned?(a)
Result: False

The complete list of predicate procedures is contained in the Programming
Procedures/Predicates node in the MathPiperDocs plugin.

14.1 Finding Prime Numbers With A Loop

Predicate procedures are very powerful when they are combined with loops
because they can be used to automatically make numerous checks. The
following program uses a While loop to pass the integers 1 through 20 (one at a
time) to the Prime?() procedure in order to determine which integers are prime
and which integers are not prime:

%mathpiper

// Determine which integers between 1 and 20 (inclusive)
// are prime and which ones are not prime.

primes := [];

nonPrimes := [];

x := 1;

While(x <=? 20)
{
 primeStatus := Prime?(x);

 If(primeStatus =? True)
 {
 Append!(primes, x);
 }
 Else
 {
 Append!(nonPrimes, x);
 }

 x := (x + 1);
}

[primes, nonPrimes];

%/mathpiper

 %output
 Result: [[2,3,5,7,11,13,17,19],[1,4,6,8,9,10,12,14,15,16,18,20]]

2626
2627

2628
2629

2630
2631

2632

2633
2634
2635
2636
2637

2638

2639
2640

2641

2642

2643

2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658

2659

2660

2661
2662

v.158 - 07/12/17 Introduction To Programming With MathPiper 91/136

. %/output

This program worked fairly well, but it can be shortened by moving the Prime?()
procedure inside of the If() procedure instead of using the primeStatus
variable to communicate with it:

%mathpiper

// Determine which integers between 1 and 20 (inclusive)
// are prime and which ones are not prime.

primes := [];

notPrimes := [];

x := 1;

While(x <=? 20)
{
 If(Prime?(x) =? True)
 {
 Append!(primes, x);
 }
 Else
 {
 Append!(notPrimes, x);
 }

 x := (x + 1);
}

[primes, notPrimes];

%/mathpiper

 %output
 Result: [[2,3,5,7,11,13,17,19],[1,4,6,8,9,10,12,14,15,16,18,20]]
. %/output

14.2 Finding The Length Of A String With The Length() Procedure

Strings can contain zero or more characters, and the Length() procedure can be
used to determine how many characters a string holds:

In> s := "Red"
Result: "Red"

In> Length(s)
Result: 3

2663

2664
2665
2666

2667

2668
2669

2670

2671

2672

2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685

2686

2687

2688
2689
2690

2691

2692
2693

2694
2695

2696
2697

v.158 - 07/12/17 Introduction To Programming With MathPiper 92/136

In this example, the string "Red" is assigned to the variable s and then s is
passed to the Length() procedure. The Length() procedure returned a 3, which
means the string contained 3 characters.

The following example shows that strings can also be passed to procedures
directly:

In> Length("Red")
Result: 3

An empty string is represented by two double quote marks with no space in
between them. The length of an empty string is 0:

In> Length("")
Result: 0

14.3 Converting Numbers To Strings With The ToString() Procedure

Sometimes it is useful to convert a number to a string so that the individual
digits in the number can be analyzed or manipulated. The following example
shows a number being converted to a string with the ToString() procedure so
that its leftmost and rightmost digits can be assigned to variables:

In> number := 678
Result: 678

In> stringNumber := ToString(number)
Result: "678"

In> leftmostDigit := stringNumber[1]
Result: "6"

In> rightmostDigit := stringNumber[Length(stringNumber)]
Result: "8"

Notice that the Length() procedure is used here to determine which character in
stringNumber held the rightmost digit. Also, keep in mind that when numbers
are in string form, operations such as +, -, *, and / cannot be performed on
them.

14.4 Finding Prime Numbers that End With 7 (And Multi-line Procedure
Calls)

Now that we have covered how to turn a number into a string, let's use this
ability inside a loop. The following program finds all the prime numbers
between 1 and 500 that have a 7 as their rightmost digit. Notice that it has

2698
2699
2700

2701
2702

2703
2704

2705
2706

2707
2708

2709

2710
2711
2712
2713

2714
2715

2716
2717

2718
2719

2720
2721

2722
2723
2724
2725

2726
2727

2728
2729
2730

v.158 - 07/12/17 Introduction To Programming With MathPiper 93/136

one If() procedure placed inside of another If() procedure. Placing an If()
procedure inside of another If() procedure is called nesting, and nesting is used
to to make more complex decisions.

When the program is executed, it finds 24 prime numbers that have 7 as their
rightmost digit:

%mathpiper

/*
 Find all the prime numbers between 1 and 500 that have a 7
 as their rightmost digit.
*/

resultList := [];

x := 1;

While(x <=? 500)
{
 If(Prime?(x))
 {
 stringVersionOfNumber := ToString(x);

 stringLength := Length(stringVersionOfNumber);

 //Notice that If() procedures can be placed inside of other
 // If() procedures.
 If(stringVersionOfNumber[stringLength] =? "7")
 {
 Append!(resultList, x);
 }

 }

 x := (x + 1);
}

resultList;

%/mathpiper

 %output
 Result: [7,17,37,47,67,97,107,127,137,157,167,197,227,

257,277,307,317,337,347,367,397,457,467,487]
. %/output

2731
2732
2733

2734
2735

2736

2737
2738
2739
2740

2741

2742

2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761

2762

2763

2764
2765
2766
2767

v.158 - 07/12/17 Introduction To Programming With MathPiper 94/136

14.5 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_14_exercises_<your first name>_<your last name>.mpws.
(Note: there are no spaces in this file name). For example, John Smith's
worksheet would be called:

book_1_section_14_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

14.5.1 Exercise 1
Write a program that uses a While loop to determine how many prime numbers
there are between 1 and 1000. Do not print the numbers themselves, just
how many there are.

14.5.2 Exercise 2
Write a program that uses a While loop to print only the prime numbers
between 10 and 99 that contain the digit 3 in either their ones place or
their tens place.

2768

2769
2770
2771
2772

2773

2774
2775
2776
2777

2778

2779

2780

2781
2782

2783

2784
2785
2786

2787

2788
2789
2790

v.158 - 07/12/17 Introduction To Programming With MathPiper 95/136

15 More Applications Of Using While Loops With Lists

15.1 Adding 1 To Each Element In A List

Procedures that loop can be used to select each expression in a list in turn so
that an operation can be performed on these expressions. The following
program uses a While loop to select each of the elements in an input list and
return an output list that contains each of the elements in the input list increased
by 1:

%mathpiper

// Add 1 to each element of a list.

list := [55,93,40,21,7,24,15,14,82];

listLength := Length(list);

index := 1;

While(index <=? listLength)
{
 list[index] := (list[index] + 1);

 index := (index + 1);
}

list;

%/mathpiper

 %output
 Result: [56,94,41,22,8,25,16,15,83]
. %/output

15.2 Determining If A Number Is In A List

A loop can also be used to search through a list. The following program uses a
While() and an If() to search through a list to see if it contains the number 53.
A message in a string is returned that indicates whether or not 53 was found in
the list:

%mathpiper

//Determine if 53 is in the list.

2791

2792

2793
2794
2795
2796
2797

2798

2799

2800

2801

2802

2803
2804
2805

2806
2807

2808

2809

2810
2811
2812

2813

2814
2815
2816
2817

2818

2819

v.158 - 07/12/17 Introduction To Programming With MathPiper 96/136

testList := [18,26,32,42,53,43,54,6,97,41];

listLength := Length(testList);

result := "53 was not found in the list";

index := 1;

While(index <=? listLength)
{
 If(testList[index] =? 53)
 {
 result := "53 was found in the list at position " +

 ToString(index);
 }

 index := (index + 1);
}

result;

%/mathpiper

 %output
 Result: "53 was found in the list at position 5"
. %/output

When this program was executed, it determined that 53 was present in the list at
position 5.

15.3 Finding The Sum Of The Integers In A List Using A While Loop

%mathpiper

// Find the sum all all the integers in a list.

list := [5,10,8,1,6,4,7,7,15,2];

listLength := Length(list);

sum := 0;

index := 1;

While(index <=? listLength)
{
 sum := (sum + list[index]);

 index := index + 1;
}

2820

2821

2822

2823

2824
2825
2826
2827
2828
2829
2830
2831
2832
2833

2834

2835

2836
2837
2838

2839
2840

2841

2842

2843

2844

2845

2846

2847

2848
2849
2850
2851
2852
2853

v.158 - 07/12/17 Introduction To Programming With MathPiper 97/136

sum;

%/mathpiper

 %output
 Result: 65
. %/output

15.4 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_15a_exercises_<your first name>_<your last
name>.mpws. (Note: there are no spaces in this file name). For example,
John Smith's worksheet would be called:

book_1_section_15a_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

15.4.1 Exercise 1
Create a program that uses a While loop and the Odd?() predicate procedure
to analyze the following list and then print the number of odd numbers it
contains. Hint: think about using code similar to count := (count + 1) in
order to do the counting.

[73,94,80,37,56,94,40,21,7,24,15,14,82,93,32,74,22,68,65,52,85,61,46,86,25]

15.4.2 Exercise 2
Create a program that uses a While loop and a NegativeNumber?() procedure
to copy all of the negative numbers in the following list into a new list.
Use the variable negativeNumbersList to hold the new list. Print the
contents of the list after it has been created.

[36,-29,-33,-6,14,7,-16,-3,-14,37,-38,-8,-45,-21,-26,6,6,38,-20,33,41,-
4,24,37,40,29]

2854

2855

2856
2857
2858

2859

2860
2861
2862
2863

2864

2865
2866
2867
2868

2869

2870

2871

2872
2873

2874

2875
2876
2877
2878

2879

2880

2881
2882
2883
2884

2885
2886

v.158 - 07/12/17 Introduction To Programming With MathPiper 98/136

15.4.3 Exercise 3
Create one program that uses a single While loop to analyze this list:

[73,12,80,37,56,94,40,21,7,24,15,14,82,93,32,74,22,68,65,52,85,61,46,86,25]

and then print the following information about it:

1) The largest number in the list.
2) The smallest number in the list.
3) The sum of all the numbers in the list (do not use the Sum() procedure).

Hint: the following program finds the largest number in a list and it can
be used as a starting point for solving this exercise.

%mathpiper

/*
 The variable that keeps track of the largest number encountered so
 far needs to be initialized to the lowest possible value it may
 hold. Why?
*/

largest := 0;

numbersList := [4,6,2,9,7,1,3];

index := 1;

While(index <=? Length(numbersList))
{
 Echo("Largest: ", largest);

 If(numbersList[index] >? largest)
 {
 largest := numbersList[index]);
 }

 index := (index + 1);
}

Echo("The largest number in the list is: ", largest);

%/mathpiper

2887

2888

2889

2890

2891
2892
2893

2894
2895

2896

2897
2898
2899
2900
2901

2902

2903

2904

2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

2916

2917

v.158 - 07/12/17 Introduction To Programming With MathPiper 99/136

15.5 The ForEach() Looping Procedure

The ForEach() procedure uses a loop to index through a list like the While()
procedure does, but it is more flexible and automatic. ForEach() also uses
bodied notation like the While() procedure and here is its calling format:

ForEach(variable, list) body

ForEach() selects each expression in a list in turn, assigns it to the passed-in
variable, and then executes the expressions that are inside of the body.
Therefore, body is executed once for each expression in the list.

15.6 Print All The Values In A List Using A ForEach() procedure

This example shows how ForEach() can be used to print all of the items in a list:

%mathpiper

//Print all values in a list.

ForEach(value, [50,51,52,53,54,55,56,57,58,59])
{
 Echo(value);
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
. %/output

15.7 Calculate The Sum Of The Numbers In A List Using ForEach()

In previous examples, counting code in the form x := (x + 1) was used to count

2918

2919
2920
2921

2922
2923
2924

2925

2926

2927

2928

2929
2930
2931
2932

2933

2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948

2949

2950

v.158 - 07/12/17 Introduction To Programming With MathPiper 100/136

how many times a While loop was executed. The following program uses a
ForEach() procedure and a line of code similar to this counter to calculate the
sum of the numbers in a list:

%mathpiper

/*
 This program calculates the sum of the numbers
 in a list.
*/

//This variable is used to accumulate the sum.
numbersSum := 0;

ForEach(number, [1,2,3,4,5,6,7,8,9,10])
{
 /*
 Add the contents of x to the contents of sum
 and place the result back into sum.
 */
 numbersSum := (numbersSum + number);

 //Print the sum as it is being accumulated.
 Write(numbersSum,',);
}

NewLine(); NewLine();

Echo("The sum of the numbers in the list is ", numbersSum);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1,3,6,10,15,21,28,36,45,55,

 The sum of the numbers in the list is 55
. %/output

In the above program, the integers 1 through 10 were manually placed into a list
by typing them individually. This method is limited because only a relatively
small number of integers can be placed into a list this way. The following section
discusses an operator that can be used to automatically place a large number of
integers into a list with very little typing.

15.8 The .. Range Operator
first .. last

2951
2952
2953

2954

2955
2956
2957
2958

2959
2960

2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971

2972

2973

2974

2975
2976
2977
2978
2979
2980
2981
2982

2983
2984
2985
2986
2987

2988

v.158 - 07/12/17 Introduction To Programming With MathPiper 101/136

A programmer often needs to create a list that contains consecutive integers
and the .. "range" operator can be used to do this. The first integer in the list is
placed before the .. operator and the last integer in the list is placed after it
(Note: there must be a space immediately to the left of the .. operator
and a space immediately to the right of it or an error will be generated.).
Here are some examples:

In> 1 .. 10
Result: [1,2,3,4,5,6,7,8,9,10]

In> 10 .. 1
Result: [10,9,8,7,6,5,4,3,2,1]

In> 1 .. 100
Result: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,
55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,
72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,
89,90,91,92,93,94,95,96,97,98,99,100]

In> -10 .. 10
Result: [-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10]

As these examples show, the .. operator can generate lists of integers in
ascending order and descending order. It can also generate lists that are very
large and ones that contain negative integers.

Remember, though, if one or both of the spaces around the .. are omitted, an
error is generated:

In> 1..3
Result:
Error parsing expression, near token .3.

15.9 Using ForEach() With The Range Operator To Print The Prime
Numbers Between 1 And 100

The following program shows how to use a ForEach() procedure instead of a
While() procedure to print the prime numbers between 1 and 100. Notice that
loops that are implemented with ForEach() often require less typing than
their While() based equivalents:

%mathpiper

2989
2990
2991
2992
2993
2994

2995
2996

2997
2998

2999
3000
3001
3002
3003
3004
3005

3006
3007

3008
3009
3010

3011
3012

3013
3014
3015

3016
3017

3018
3019
3020
3021

3022

v.158 - 07/12/17 Introduction To Programming With MathPiper 102/136

/*
 This program prints the prime integers between 1 and 100 using
 a ForEach() procedure instead of a While() procedure. Notice that
 the ForEach() version requires less typing than the While()
 version.
*/

ForEach(number, 1 .. 100)
{
 If(Prime?(number)) Write(number,',);
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,
 73,79,83,89,97,
. %/output

15.9.1 Using ForEach() And The Range Operator To Place The Prime
Numbers Between 1 And 50 Into A List

A ForEach() procedure can also be used to place values in a list, just like the
While() procedure can:

%mathpiper

/*
 Place the prime numbers between 1 and 50 into
 a list using a ForEach() procedure.
*/

//Create a new list.
primesList := [];

ForEach(number, 1 .. 50)
{
 /*
 If number is prime, append it to the end of the list and
 then assign the new list that is created to the variable
 'primes'.
 */
 If(Prime?(number))
 {
 primesList := Append(primesList, number);
 }

3023
3024
3025
3026
3027
3028

3029
3030
3031
3032

3033

3034
3035
3036
3037
3038
3039
3040

3041
3042

3043
3044

3045

3046
3047
3048
3049

3050
3051

3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062

v.158 - 07/12/17 Introduction To Programming With MathPiper 103/136

}

//Print information about the primes that were found.
WriteString("Primes: ");
Write(primesList);
NewLine();
Echo("The number of primes in the list is ", Length(primesList));
Echo("The first number in the list is ", primesList[1]);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 Primes: [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]
 The number of primes in the list is 15
 The first number in the list is 2
. %/output

As can be seen from the above examples, the ForEach() procedure and the
range operator can do a significant amount of work with very little typing. You
will discover in the next section that MathPiper has procedures that are even
more powerful than these two.

15.9.2 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_15b_exercises_<your first name>_<your last
name>.mpws. (Note: there are no spaces in this file name). For example,
John Smith's worksheet would be called:

book_1_section_15b_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

3063

3064
3065
3066
3067
3068
3069

3070

3071
3072
3073
3074
3075
3076
3077
3078

3079
3080
3081
3082

3083

3084
3085
3086
3087

3088

3089
3090
3091
3092

3093

3094

3095

3096
3097

v.158 - 07/12/17 Introduction To Programming With MathPiper 104/136

15.9.3 Exercise 1
Create a program that uses a ForEach() procedure and an Odd?() predicate
procedure to analyze the following list and then print the number of odd
numbers it contains.

[73,94,80,37,56,94,40,21,7,24,15,14,82,93,32,74,22,68,65,52,85,61,46,86,25]

15.9.4 Exercise 2
Create a program that uses a ForEach() procedure and an NegativeNumber?()
procedure to copy all of the negative numbers in the following list into a
new list. Use the variable negativeNumbersList to hold the new list.
Print the contents of the list after it has been created.

[36,-29,-33,-6,14,7,-16,-3,-14,37,-38,-8,-45,-21,-26,6,6,38,-20,33,41,-
4,24,37,40,29]

15.9.5 Exercise 3
Create one program that uses a single ForEach() procedure to analyze the
following list and then print the following information about it:

1) The largest number in the list.
2) The smallest number in the list.
3) The sum of all the numbers in the list (do not use the Sum() procedure).

[73,94,80,37,56,94,40,21,7,24,15,14,82,93,32,74,22,68,65,52,85,61,46,86,25]

15.9.6 Exercise 4
Create one program that does the following:

1) Use a While loop to make a list that contains 1000 random integers
between 1 and 100 inclusive.

2) Use a ForEach() loop to determine how many integers in the list you
created are prime and use an Echo() procedure to print this total.

3098

3099
3100
3101

3102

3103

3104
3105
3106
3107

3108
3109

3110

3111
3112

3113
3114
3115

3116

3117

3118

3119
3120

3121
3122

v.158 - 07/12/17 Introduction To Programming With MathPiper 105/136

16 Procedures & Operators That Loop Internally

Looping is such a useful capability that MathPiper has many procedures that
loop internally. Now that you have some experience with loops, you can use this
experience to help you imagine how these procedures use loops to process the
information that is passed to them.

16.1 Procedures & Operators That Loop Internally To Process Lists

This section discusses a number of procedures that use loops to process lists.

16.1.1 TableForm()
TableForm(list)

The TableForm() procedure prints the contents of a list in the form of a table.
Each member in the list is printed on its own line, and this sometimes makes the
contents of the list easier to read:

In> testList := [2,4,6,8,10,12,14,16,18,20]
Result: [2,4,6,8,10,12,14,16,18,20]

In> TableForm(testList)
Result: True
Side Effects>
2
4
6
8
10
12
14
16
18
20

16.1.2 Contains?()

The Contains?() procedure searches a list to determine if it contains a given
expression. If it finds the expression, it returns True and if it doesn't find the
expression, it returns False. Here is the calling format for Contains?():

Contains?(list, expression)

3123

3124
3125
3126
3127

3128

3129

3130

3131
3132
3133

3134
3135

3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148

3149

3150
3151
3152

v.158 - 07/12/17 Introduction To Programming With MathPiper 106/136

The following code shows Contains?() being used to locate a number in a list:

In> Contains?([50,51,52,53,54,55,56,57,58,59], 53)
Result: True

In> Contains?([50,51,52,53,54,55,56,57,58,59], 75)
Result: False

The !? operator can also be used with predicate procedures like Contains?() to
change their results to the opposite truth value:

In> !? Contains?([50,51,52,53,54,55,56,57,58,59], 75)
Result: True

16.1.3 Find()
Find(list, expression)

The Find() procedure searches a list for the first occurrence of a given
expression. If the expression is found, the position of its first occurrence is
returned and if it is not found, -1 is returned:

In> Find([23, 15, 67, 98, 64], 15)
Result: 2

In> Find([23, 15, 67, 98, 64], 8)
Result: -1

16.1.4 Count()
Count(list, expression)

Count() determines the number of times a given expression occurs in a list:

In> testList := [_a,_b,_b,_c,_c,_c,_d,_d,_d,_d,_e,_e,_e,_e,_e]
Result: [_a,_b,_b,_c,_c,_c,_d,_d,_d,_d,_e,_e,_e,_e,_e]

In> Count(testList, _c)
Result: 3

In> Count(testList, _e)
Result: 5

In> Count(testList, _z)
Result: 0

3153

3154
3155

3156
3157

3158
3159

3160
3161

3162

3163
3164
3165

3166
3167

3168
3169

3170

3171

3172
3173

3174
3175

3176
3177

3178
3179

v.158 - 07/12/17 Introduction To Programming With MathPiper 107/136

16.1.5 Select()
Select(list, predicate_procedure)

Select() returns a list that contains all the expressions in a list that make a given
predicate procedure return True:

In> Select([46,87,59,-27,11,86,-21,-58,-86,-52], "PositiveInteger?")
Result: [46,87,59,11,86]

In this example, notice that the name of the predicate procedure is passed to
Select() in double quotes. There are other ways to pass a predicate procedure
to Select() but these are covered in a later section.

Here are some further examples that use the Select() procedure:

In> Select([16,14,82,92,33,74,99,67,65,52], "Odd?")
Result: [33,99,67,65]

In> Select([16,14,82,92,33,74,99,67,65,52], "Even?")
Result: [16,14,82,92,74,52]

In> Select(1 .. 75, "Prime?")
Result: [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73]

Notice how the third example uses the .. operator to automatically generate a list
of consecutive integers from 1 to 75 for the Select() procedure to analyze.

16.1.6 The Nth() Procedure & The [] Operator
Nth(list, index)

The Nth() procedure simply returns the expression that is at a given position in
a list. This example shows the third expression in a list being obtained:

In> testList := [_a,_b,_c,_d,_e,_f,_g]
Result: [_a,_b,_c,_d,_e,_f,_g]

In> Nth(testList, 3)
Result: c

As discussed earlier, the [] operator can also be used to obtain a single
expression from a list:

3180

3181
3182

3183
3184

3185
3186
3187

3188

3189
3190

3191
3192

3193
3194

3195
3196

3197

3198
3199

3200
3201

3202
3203

3204
3205

v.158 - 07/12/17 Introduction To Programming With MathPiper 108/136

In> testList[3]
Result: c

The [] operator can even obtain a single expression directly from a list without
needing to use a variable:

In> [_a,_b,_c,_d,_e,_f,_g][3]
Result: _c

16.1.7 Concat()
Concat(list1, list2, ...)

The Concat() procedure is short for "concatenate", which means to join together
sequentially. It takes two or more lists and joins them together into a single
larger list:

In> Concat([_a,_b,_c], [1,2,3], [_x,_y,_z])
Result: [_a,_b,_c,1,2,3,_x,_y,_z]

16.1.8 Insert(), Delete(), & Replace()
Insert(list, index, expression)

Delete(list, index)

Replace(list, index, expression)

Insert() inserts an expression into a list at a given index, Delete() deletes an
expression from a list at a given index, and Replace() replaces an expression in
a list at a given index with another expression:

In> testList := [_a,_b,_c,_d,_e,_f,_g]
Result: [_a,_b,_c,_d,_e,_f,_g]

In> testList := Insert(testList, 4, 123)
Result: [_a,_b,_c,123,_d,_e,_f,_g]

In> testList := Delete(testList, 4)
Result: [_a,_b,_c,_d,_e,_f,_g]

In> testList := Replace(testList, 4, _xxx)

3206
3207

3208
3209

3210
3211

3212

3213
3214
3215

3216
3217

3218

3219
3220
3221

3222
3223

3224
3225

3226
3227

3228

v.158 - 07/12/17 Introduction To Programming With MathPiper 109/136

Result: [_a,_b,_c,_xxx,_e,_f,_g]

16.1.9 Take()
Take(list, amount)
Take(list, -amount)
Take(list, [begin_index,end_index])

Take() obtains a sublist from the beginning of a list, the end of a list, or the
middle of a list. The expressions in the list that are not taken are discarded.

A positive integer passed to Take() indicates how many expressions should be
taken from the beginning of a list:

In> testList := [_a,_b,_c,_d,_e,_f,_g]
Result: [_a,_b,_c,_d,_e,_f,_g]

In> Take(testList, 3)
Result: [_a,_b,_c]

A negative integer passed to Take() indicates how many expressions should be
taken from the end of a list:

In> Take(testList, -3)
Result: [_e,_f,_g]

Finally, if a two member list is passed to Take() it indicates the range of
expressions that should be taken from the middle of a list. The first value in the
passed-in list specifies the beginning index of the range and the second value
specifies its end:

In> Take(testList, [3,5])
Result: [_c,_d,_e]

16.1.10 Drop()
Drop(list, index)
Drop(list, -index)
Drop(list, [begin_index,end_index])

Drop() does the opposite of Take() in that it drops expressions from the
beginning of a list, the end of a list, or the middle of a list, and returns a list
that contains the remaining expressions.

A positive integer passed to Drop() indicates how many expressions should be

3229

3230

3231
3232

3233
3234

3235
3236

3237
3238

3239
3240

3241
3242

3243
3244
3245
3246

3247
3248

3249

3250
3251
3252

3253

v.158 - 07/12/17 Introduction To Programming With MathPiper 110/136

dropped from the beginning of a list:

In> testList := [_a,_b,_c,_d,_e,_f,_g]
Result: [_a,_b,_c,_d,_e,_f,_g]

In> Drop(testList, 3)
Result: [_d,_e,_f,_g]

A negative integer passed to Drop() indicates how many expressions should be
dropped from the end of a list:

In> Drop(testList, -3)
Result: [_a,_b,_c,_d]

Finally, if a two member list is passed to Drop() it indicates the range of
expressions that should be dropped from the middle of a list. The first value in
the passed-in list specifies the beginning index of the range and the second
value specifies its end:

In> Drop(testList, [3,5])
Result: [_a,_b,_f,_g]

16.1.11 FillList()
FillList(expression, length)

The FillList() procedure simply creates a list that is of size "length" and fills it
with "length" copies of the given expression:

In> FillList(_a, 5)
Result: [_a,_a,_a,_a,_a]

In> FillList(42,8)
Result: [42,42,42,42,42,42,42,42]

16.1.12 RemoveDuplicates()
RemoveDuplicates(list)

RemoveDuplicates() removes any duplicate expressions that are contained in a
list:

In> testList := [_a,_a,_b,_c,_c,_b,_b,_a,_b,_c,_c]
Result: [_a,_a,_b,_c,_c,_b,_b,_a,_b,_c,_c]

3254

3255
3256

3257
3258

3259
3260

3261
3262

3263
3264
3265
3266

3267
3268

3269

3270
3271

3272
3273

3274
3275

3276

3277
3278

3279
3280

v.158 - 07/12/17 Introduction To Programming With MathPiper 111/136

In> RemoveDuplicates(testList)
Result: [_a,_b,_c]

16.1.13 Reverse()
Reverse(list)

Reverse() reverses the order of the expressions in a list:

In> testList := [_a,_b,_c,_d,_e,_f,_g,_h]
Result: [_a,_b,_c,_d,_e,_f,_g,_h]

In> Reverse(testList)
Result: [_h,_g,_f,_e,_d,_c,_b,_a]

16.1.14 Partition()
Partition(list, partition_size)

The Partition() procedure breaks a list into sublists of size "partition_size":

In> testList := [_a,_b,_c,_d,_e,_f,_g,_h]
Result: [_a,_b,_c,_d,_e,_f,_g,_h]

In> Partition(testList, 2)
Result: [[_a,_b],[_c,_d],[_e,_f],[_g,_h]]

If the partition_size does not divide the length of the list evenly, the remaining
elements are discarded:

In> Partition(testList, 3)
Result: [[_a,_b,_c],[_d,_e,_f]]

The number of elements that Partition() will discard can be calculated by
dividing the length of a list by the partition size and obtaining the remainder:

In> Length(testList) % 3
Result: 2

Remember that % is the remainder operator. It divides two integers and returns
their remainder.

3281
3282

3283

3284

3285
3286

3287
3288

3289

3290

3291
3292

3293
3294

3295
3296

3297
3298

3299
3300

3301
3302

3303
3304

v.158 - 07/12/17 Introduction To Programming With MathPiper 112/136

16.1.15 BuildList()
BuildList(expression, variable, begin_value, end_value, step_amount)

The BuildList() procedure creates a list of values by doing the following:

1) Generating a sequence of values between a "begin_value" and an
"end_value" with each value being incremented by the "step_amount".

2) Placing each value in the sequence into the specified "variable", one value
at a time.

3) Evaluating the defined "expression" (which contains the defined "variable")
for each value, one at a time.

4) Placing the result of each "expression" evaluation into the result list.

This example generates a list that contains the integers 1 through 10:

In> BuildList(x, x, 1, 10, 1)
Result: [1,2,3,4,5,6,7,8,9,10]

Notice that the expression in this example is simply the variable 'x' itself with no
other operations performed on it.

The following example is similar to the previous one except that its expression
multiplies 'x' by 2:

In> BuildList(x*2, x, 1, 10, 1)
Result: [2,4,6,8,10,12,14,16,18,20]

Lists that contain decimal values can also be created by setting the
"step_amount" to a decimal:

In> BuildList(x, x, 0, 1, .1)
Result: [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

16.1.16 Sort()
Sort(list, compare)

Sort() sorts the elements of list into the order indicated by compare with
compare typically being the less than operator "<" or the greater than
operator ">":

In> Sort([4,7,23,53,-2,1], "<?");
Result: [-2,1,4,7,23,53]

3305

3306

3307
3308

3309
3310

3311
3312

3313

3314

3315
3316

3317
3318

3319
3320

3321
3322

3323
3324

3325
3326

3327

3328
3329
3330

3331
3332

v.158 - 07/12/17 Introduction To Programming With MathPiper 113/136

In> Sort([4,7,23,53,-2,1], ">?");
Result: [53,23,7,4,1,-2]

In> Sort([1/2,3/5,7/8,5/16,3/32], "<?")
Result: [3/32,5/16,1/2,3/5,7/8]

In> Sort([.5,3/5,.76,5/16,3/32], "<?")
Result: [3/32,5/16,.5,3/5,.76]

16.2 Procedures That Work With Integers

This section discusses various procedures that work with integers. Some of
these procedures also work with non-integer values and their use with non-
integers is discussed in other sections.

16.2.1 RandomIntegerList()
RandomIntegerList(length, lowest_possible, highest_possible)

A vector is a list that does not contain other lists. RandomIntegerList() creates
a list of size "length" that contains random integers that are no lower than
"lowest_possible" and no higher than "highest possible". The following example
creates 10 random integers between 1 and 99 inclusive:

In> RandomIntegerList(10, 1, 99)
Result: [73,93,80,37,55,93,40,21,7,24]

16.2.2 Maximum() & Minimum()
Maximum(value1, value2)
Maximum(list)

If two values are passed to Maximum(), it determines which one is larger:

In> Maximum(10, 20)
Result: 20

If a list of values are passed to Maximum(), it finds the largest value in the list:

In> testList := RandomIntegerList(10, 1, 99)
Result: [73,93,80,37,55,93,40,21,7,24]

In> Maximum(testList)
Result: 93

3333
3334

3335
3336

3337
3338

3339

3340
3341
3342

3343

3344
3345
3346
3347

3348
3349

3350

3351

3352
3353

3354

3355
3356

3357
3358

v.158 - 07/12/17 Introduction To Programming With MathPiper 114/136

The Minimum() procedure is the opposite of the Maximum() procedure.

Minimum(value1, value2)
Minimum(list)

If two values are passed to Minimum(), it determines which one is smaller:

In> Minimum(10, 20)
Result: 10

If a list of values are passed to Minimum(), it finds the smallest value in the list:

In> testList := RandomIntegerList(10, 1, 99)
Result: [73,93,80,37,55,93,40,21,7,24]

In> Minimum(testList)
Result: 7

16.2.3 Quotient() & Modulo()
Quotient(dividend, divisor)
Modulo(dividend, divisor)

Quotient() determines the whole number of times a divisor goes into a dividend:

In> Quotient(7, 3)
Result: 2

Modulo() determines the remainder that results when a dividend is divided by
a divisor:

In> Modulo(7,3)
Result: 1

The remainder/modulo operator % can also be used to calculate a remainder:

In> 7 % 2
Result: 1

16.2.4 Gcd()
Gcd(value1, value2)
Gcd(list)

3359

3360

3361
3362

3363

3364
3365

3366
3367

3368

3369

3370
3371

3372
3373

3374
3375

3376

3377
3378

3379

v.158 - 07/12/17 Introduction To Programming With MathPiper 115/136

GCD stands for Greatest Common Divisor and the Gcd() procedure determines
the greatest common divisor of the values that are passed to it.

If two integers are passed to Gcd(), it calculates their greatest common divisor:

In> Gcd(21, 56)
Result: 7

If a list of integers are passed to Gcd(), it finds the greatest common divisor of all
the integers in the list:

In> Gcd([9, 66, 123])
Result: 3

16.2.5 Lcm()
Lcm(value1, value2)
Lcm(list)

LCM stands for Least Common Multiple and the Lcm() procedure determines
the least common multiple of the values that are passed to it.

If two integers are passed to Lcm(), it calculates their least common multiple:

In> Lcm(14, 8)
Result: 56

If a list of integers are passed to Lcm(), it finds the least common multiple of all
the integers in the list:

In> Lcm([3,7,9,11])
Result: 693

16.2.6 Sum()
Sum(list)

Sum() can find the sum of a list that is passed to it:

In> testList := RandomIntegerList(10,1,99)
Result: [73,93,80,37,55,93,40,21,7,24]

In> Sum(testList)
Result: 523

In> testList := (1 .. 10)

3380
3381

3382

3383
3384

3385
3386

3387
3388

3389

3390
3391

3392

3393
3394

3395
3396

3397
3398

3399

3400

3401
3402

3403
3404

3405

v.158 - 07/12/17 Introduction To Programming With MathPiper 116/136

Result: [1,2,3,4,5,6,7,8,9,10]

In> Sum(testList)
Result: 55

16.2.7 Product()
Product(list)

This procedure has two calling formats, only one of which is discussed here.
Product(list) multiplies all the expressions in a list together and returns their
product:

In> Product([1,2,3])
Result: 6

16.3 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_16_exercises_<your first name>_<your last name>.mpws.
(Note: there are no spaces in this file name). For example, John Smith's
worksheet would be called:

book_1_section_16_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

16.3.1 Exercise 1
Create a program that uses RandomIntegerList() to create a 100 member list
that contains random integers between 1 and 5 inclusive. Use one Count()
procedure call in a loop to determine how many of each digit 1-5 are in the
list and then print this information.

Hint 1: You can use the following code as the starting point for your loop:

3406

3407
3408

3409

3410
3411
3412

3413
3414

3415

3416
3417
3418
3419

3420

3421
3422
3423
3424

3425

3426

3427

3428
3429

3430

3431
3432
3433
3434

3435

v.158 - 07/12/17 Introduction To Programming With MathPiper 117/136

ForEach(num, 1 .. 5)
{

}

Hint 2: you can use the Sort() procedure to sort the generated list to make
it easier to check if your program is counting correctly.

16.3.2 Exercise 2
Create a program that uses RandomIntegerList() to create a 100 member list
that contains random integers between 1 and 50 inclusive and use Contains?
() to determine if the number 25 is in the list. Print "25 was in the
list." if 25 was found in the list and "25 was not in the list." if it
wasn't found.

16.3.3 Exercise 3
Create a program that uses RandomIntegerList() to create a 100 member list
that contains random integers between 1 and 50 inclusive and use Find() to
determine if the number 10 is in the list. Print the position of 10 if it
was found in the list and "10 was not in the list." if it wasn't found.

16.3.4 Exercise 4
Create a program that uses RandomIntegerList() to create a 100 member list
that contains random integers between 0 and 3 inclusive. Use Select() with
the NonZeroInteger?() predicate procedure to obtain all of the nonzero
integers in this list.

16.3.5 Exercise 5
Create a program that uses BuildList() to obtain a list that contains the
squares of the integers between 1 and 10 inclusive.

3436
3437

3438

3439
3440

3441

3442
3443
3444
3445
3446

3447

3448
3449
3450
3451

3452

3453
3454
3455
3456

3457

3458
3459

v.158 - 07/12/17 Introduction To Programming With MathPiper 118/136

17 Nested Loops

Now that you have seen how to solve problems with single loops, it is time to
discuss what can be done when a loop is placed inside of another loop. A loop
that is placed inside of another loop it is called a nested loop and this nesting
can be extended to numerous levels if needed. This means that loop 1 can have
loop 2 placed inside of it, loop 2 can have loop 3 placed inside of it, loop 3 can
have loop 4 placed inside of it, and so on.

Nesting loops allows the programmer to accomplish an enormous amount of
work with very little typing.

17.1 Generate All The Combinations That Can Be Entered Into A Two Digit
Wheel Lock Using A Nested Loop

The following program generates all the combinations that can be entered into a
two digit wheel lock. It uses a nested loop to accomplish this with the "inside"
nested loop being used to generate one's place digits and the "outside" loop
being used to generate ten's place digits.

%mathpiper

/*
 Generate all the combinations can be entered into a two
 digit wheel lock.
*/

combinationsList := [];

ForEach(digit1, 0 .. 9) //This loop is called the "outside" loop.

3460

3461
3462
3463
3464
3465
3466

3467
3468

3469
3470

3471
3472
3473
3474

3475

3476
3477
3478
3479

3480

3481

v.158 - 07/12/17 Introduction To Programming With MathPiper 119/136

{
 ForEach(digit2, 0 .. 9)//This loop is called the "inside" loop.
 {
 combinationsList := Append(combinationsList, [digit1, digit2]);
 }
}

TableForm(combinationsList);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 [0,0]
 [0,1]
 [0,2]
 [0,3]
 [0,4]
 [0,5]
 [0,6]
 .
 . //The middle of the list has not been shown.
 .
 [9,3]
 [9,4]
 [9,5]
 [9,6]
 [9,7]
 [9,8]
 [9,9]
 True
. %/output

The relationship between the outside loop and the inside loop is interesting
because each time the outside loop cycles once, the inside loop cycles 10
times. Study this program carefully because nested loops can be used to solve a
wide range of problems and therefore understanding how they work is
important.

17.2 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_17_exercises_<your first name>_<your last name>.mpws.
(Note: there are no spaces in this file name). For example, John Smith's
worksheet would be called:

book_1_section_17_exercises_john_smith.mpws.

3482
3483
3484
3485
3486
3487

3488

3489

3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512

3513
3514
3515
3516
3517

3518

3519
3520
3521
3522

3523

v.158 - 07/12/17 Introduction To Programming With MathPiper 120/136

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

17.2.1 Exercise 1
Create a program that will generate all of the combinations that can be
entered into a three digit wheel lock. (Hint: a triple nested loop can be
used to accomplish this.)

3524
3525
3526
3527

3528

3529

3530

3531
3532

3533

3534
3535
3536

v.158 - 07/12/17 Introduction To Programming With MathPiper 121/136

18 User Defined Procedures

In computer programming, a procedure is a named section of code that can be
called from other sections of code. Values can be sent to a procedure for
processing as part of the call, and a procedure always returns a value as its
result. A procedure can also generate side effects when it is called, and side
effects have been covered in earlier sections.

The values that are sent to a procedure when it is called are called arguments
or actual parameters, and a procedure can accept 0 or more of them. These
arguments are usually placed within parentheses.

MathPiper has many predefined procedures (some of which have been discussed
in previous sections) but users can create their own procedures too. The
following program creates a procedure called addNums() that takes two
numbers as arguments, adds them together, and returns their sum back to the
calling code as a result:

In> addNums(num1,num2) := (num1 + num2)
Result: True

This line of code defined a new procedure called addNums and specified that it
will accept two values when it is called. The first value will be assigned to the
variable num1 and the second value will be assigned to the variable num2.

Variables like num1 and num2 that are used in a procedure to accept values from
calling code are called formal parameters. Formal parameter variables are
used inside a procedure to process the values/actual parameters/arguments
that were assigned to them by the calling code.

The code on the right side of the assignment operator is assigned to the
procedure name "addNums" and it is executed each time addNums() is called.
The following example shows the new addNums() procedure being called
multiple times with different values being passed to it:

In> addNums(2,3)
Result: 5

In> addNums(4,5)
Result: 9

In> addNums(9,1)
Result: 10

Notice that, unlike the procedures that come with MathPiper, we chose to have
this procedure's name start with a lower case letter. We could have had
addNums() begin with an upper case letter but it is a convention in MathPiper

3537

3538
3539
3540
3541
3542

3543
3544
3545

3546
3547
3548
3549
3550

3551
3552

3553
3554
3555

3556
3557
3558
3559

3560
3561
3562
3563

3564
3565

3566
3567

3568
3569

3570
3571
3572

v.158 - 07/12/17 Introduction To Programming With MathPiper 122/136

for user defined procedure names to begin with a lower case letter to
distinguish them from the procedures that come with MathPiper.

The values that are returned from user defined procedures can also be assigned
to variables. The following example uses a %mathpiper fold to define a
procedure called evenIntegers() and then this procedure is used in the
MathPiper console to assign a list of even integers to the variable "a":

%mathpiper

evenIntegers(endInteger) :=
{
 resultList := [];

 x := 2;

 While(x <=? endInteger)
 {
 resultList := Append(resultList, x);

 x := (x + 2);
 }

 /*

The result of the last expression that is executed in a procedure
is the result that the procedure returns to the caller. In this case,
resultList is purposely being executed last so that its contents are
returned to the caller.

 */
 resultList;
}

%/mathpiper

 %output,preserve="false"
 Result: True
. %/output

In> a := evenIntegers(10)
Result: [2,4,6,8,10]

In> Length(a)
Result: 5

The procedure evenIntegers() returns a list that contains all the even integers
from 2 up through the value that was passed into it. The fold was first executed
in order to define the evenIntegers() procedure and make it ready for use. The
evenIntegers() procedure was then called from the MathPiper console and 10
was passed to it.

3573
3574

3575
3576
3577
3578

3579

3580
3581
3582

3583
3584
3585
3586
3587

3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598

3599

3600
3601
3602

3603
3604

3605
3606

3607
3608
3609
3610
3611

v.158 - 07/12/17 Introduction To Programming With MathPiper 123/136

After the procedure was finished executing, it returned a list of even integers as
a result, and this result was assigned to the variable 'a'. We then passed the list
that was assigned to 'a' to the Length() procedure in order to determine its size.

18.1 Global Variables, Local Variables, & Local()

The new evenIntegers() procedure seems to work well, but there is a problem.
The variables 'x' and resultList were defined inside the procedure as global
variables, which means they are accessible from anywhere, including from
within other procedures, within other folds (as shown here):

%mathpiper

Echo(x, ",", resultList);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 12 ,[2,4,6,8,10]
. %/output

and from within the MathPiper console:

In> x
Result: 12

In> resultList
Result: [2,4,6,8,10]

Using global variables inside of procedures is usually not a good idea
because code in other procedures and folds might already be using (or will use)
the same variable names. Global variables that have the same name are the
same variable. When one section of code changes the value of a given global
variable, the value is changed everywhere that variable is used and this will
eventually cause problems.

In order to prevent errors being caused by global variables having the same
name, a procedure named Local() can be called inside of a procedure to define
what are called local variables. A local variable is only accessible inside the
procedure it has been defined in, even if it has the same name as a global
variable. The following example shows a second version of the evenIntegers()
procedure that uses Local() to make 'x' and resultList local variables:

3612
3613
3614

3615

3616
3617
3618
3619

3620

3621

3622

3623
3624
3625
3626
3627
3628

3629

3630
3631

3632
3633

3634
3635
3636
3637
3638
3639

3640
3641
3642
3643
3644
3645

v.158 - 07/12/17 Introduction To Programming With MathPiper 124/136

%mathpiper

/*
 This version of evenIntegers() uses Local() to make
 x and resultList local variables
*/

evenIntegers(endInteger) :=
{
 Local(x,resultList);

 resultList := [];

 x := 2;

 While(x <=? endInteger)
 {
 resultList := Append(resultList, x);

 x := (x + 2);
 }

 /*

The result of the last expression that is executed in a procedure
is the result that the procedure returns to the caller. In this case,
resultList is purposely being executed last so that its contents are
returned to the caller.

 */
 resultList;
}

%/mathpiper

 %output,preserve="false"
 Result: True
. %/output

We can verify that 'x' and resultList are now local variables by first clearing
them, calling evenIntegers(), and then seeing what 'x' and resultList contain:

In> Unassign(x, resultList)
Result: True

In> evenIntegers(10)
Result: [2,4,6,8,10]

In> x
Result: x

In> resultList

3646

3647
3648
3649
3650

3651
3652
3653
3654
3655

3656
3657
3658
3659
3660

3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

3672

3673
3674
3675

3676
3677

3678
3679

3680
3681

3682
3683

3684

v.158 - 07/12/17 Introduction To Programming With MathPiper 125/136

Result: resultList

18.2 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_18_exercises_<your first name>_<your last name>.mpws.
(Note: there are no spaces in this file name). For example, John Smith's
worksheet would be called:

book_1_section_18_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

18.2.1 Exercise 1
Create a procedure called tenOddIntegers() that returns a list that
contains 10 random odd integers between 1 and 99 inclusive.

Hint: You may want to use the RandomIntegerList(), Select(), Odd?(), and
Take() procedures.

18.2.2 Exercise 2
Create a procedure called convertStringToList(string) that takes a string
as a parameter and returns a list that contains all of the characters in
the string. Here is an example of how the procedure should work:

In> convertStringToList("Hello friend!")
Result: ["H","e","l","l","o"," ","f","r","i","e","n","d","!"]

In> convertStringToList("Computer Algebra System")
Result: ["C","o","m","p","u","t","e","r"," ","A","l","g","e","b","r","a","
","S","y","s","t","e","m"]

Hint: Remember, a string can be broken down into individual characters by using
an index value inside of brackets [] like this:

3685

3686

3687
3688
3689
3690

3691

3692
3693
3694
3695

3696

3697

3698

3699
3700

3701

3702
3703

3704
3705

3706

3707
3708
3709

3710
3711

3712
3713
3714

3715
3716

v.158 - 07/12/17 Introduction To Programming With MathPiper 126/136

In> string := "Hello"
Result: "Hello"

In> string[1]
Result: "H"

In> string[2]
Result: "e"

In> string[3]
Result: "l"

In> string[4]
Result: "l"

In> string[5]
Result: "o"

Your procedure should use this indexing technique inside of a loop to append
each of these characters to a list.

3717
3718

3719
3720

3721
3722

3723
3724

3725
3726

3727
3728

3729
3730

v.158 - 07/12/17 Introduction To Programming With MathPiper 127/136

19 Miscellaneous topics

19.1 Incrementing And Decrementing Variables With The ++ And --
Operators

Up until this point we have been adding 1 to a variable with code in the form of x
:= (x + 1) and subtracting 1 from a variable with code in the form of x := (x -
1). Another name for adding 1 to a variable is incrementing it and
decrementing a variable means to subtract 1 from it. Now that you have had
some experience with these longer forms, it is time to show you shorter versions
of them.

19.1.1 Incrementing Variables With The ++ Operator

The number 1 can be added to a variable by simply placing the ++ operator after
it like this:

In> x := 1
Result: 1

In> x++;
Result: 2

In> x
Result: 2

Here is a program that uses the ++ operator to increment a loop index variable:

%mathpiper

index := 1;

While(index <=? 10)
{
 Echo(index);

 index++; //The ++ operator increments the index variable.
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1

3731

3732
3733

3734
3735
3736
3737
3738
3739

3740

3741
3742

3743
3744

3745
3746

3747
3748

3749

3750

3751

3752
3753
3754
3755
3756
3757

3758

3759
3760
3761
3762
3763

v.158 - 07/12/17 Introduction To Programming With MathPiper 128/136

 2
 3
 4
 5
 6
 7
 8
 9
 10
. %/output

19.1.2 Decrementing Variables With The -- Operator

The number 1 can be subtracted from a variable by simply placing the --
operator after it like this:

In> x := 1
Result: 1

In> x--;
Result: 0

In> x
Result: 0

Here is a program that uses the -- operator to decrement a loop index variable:

%mathpiper

index := 10;

While(index >=? 1)
{
 Echo(index);

 index--; //The -- operator decrements the index variable.
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 10
 9
 8
 7
 6

3764
3765
3766
3767
3768
3769
3770
3771
3772
3773

3774

3775
3776

3777
3778

3779
3780

3781
3782

3783

3784

3785

3786
3787
3788
3789
3790
3791

3792

3793
3794
3795
3796
3797
3798
3799
3800
3801

v.158 - 07/12/17 Introduction To Programming With MathPiper 129/136

 5
 4
 3
 2
 1
. %/output

19.1.3 The For() Looping Procedure

The For() procedure provides an easy way to create loops that use an index
variable. This is the calling format for the For() procedure:

For(initialization, predicate, changeIndex) body

The parameter named "initialization" is an expression that is usually used to
assign an initial value to the index variable. The parameter named "predicate" is
an expression that is evaluated before the body is evaluated. If this "predicate"
evaluates to True, then the body is evaluated. If "predicate" evaluates to False,
the body is not evaluated, and the For() procedure finishes. The parameter
named "changeIndex" is used to increase or decrease the value that is assigned
to the index variable.

The following code uses a For() procedure to print the integers from 1 to 10
inclusive:

%mathpiper

For(index := 1, index <=? 10, index++)
{
 Echo(index);
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
 4
 5
 6
 7
 8
 9

3802
3803
3804
3805
3806
3807

3808

3809
3810

3811
3812
3813
3814
3815
3816
3817

3818
3819

3820

3821
3822
3823
3824

3825

3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838

v.158 - 07/12/17 Introduction To Programming With MathPiper 130/136

 10
. %/output

19.1.4 The Break() Procedure

The Break() procedure is used to end a loop early and here is its calling format:

Break()

The following program has a While loop that is configured to loop 10 times.
However, when the loop counter variable index reaches 5, the Break() procedure
is called and this causes the loop to end early:

%mathpiper

index := 1;

While(index <=? 10)
{
 Echo(index);

 If(index =? 5) Break();

 index++;
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
 4
 5
. %/output

When a Break() procedure is used to end a loop, it is called "breaking out" of
the loop. Notice that only the numbers 1-5 are printed in this program.

19.1.5 The Continue() Procedure

The Continue() procedure is similar to the Break() procedure, except that

3839
3840

3841

3842

3843
3844
3845

3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859

3860
3861
3862
3863
3864
3865
3866
3867
3868
3869

3870
3871

3872

3873

v.158 - 07/12/17 Introduction To Programming With MathPiper 131/136

instead of ending the loop, it simply causes it to skip the remainder of the
loop for the current loop iteration. Here is the Continue() procedure's calling
format:

Continue()

The following program uses a While loop that is configured to print the integers
from 0 to 8. However, the Continue() procedure is used to skip the execution of
the Echo() procedure when the loop indexing variable index is equal to 5:

%mathpiper

index := 0;

While(index <? 8)
{
 index++;

 If(index =? 5) Continue();

 Echo(index);
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
 4
 6
 7
 8
. %/output

Notice that the number 5 is not printed when this program is executed.

19.1.6 The Repeat() Looping Procedure

The Repeat() procedure is a looping procedure that is similar to While() and
ForEach(), but it is simpler than these two. Here are the two calling formats for
Repeat():

3874
3875
3876

3877
3878
3879

3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891

3892

3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904

3905

3906

3907
3908
3909

v.158 - 07/12/17 Introduction To Programming With MathPiper 132/136

Repeat(count) body
Repeat() body

The first version of Repeat() simply takes an integer argument that indicates how
many times it should loop. The following program shows how to use Repeat() to
print 4 copies of the word "Hello":

%mathpiper

Repeat(4)
{
 Echo("Hello");
}

%/mathpiper

 %output,preserve="false"
 Result: 4

 Side Effects:
 Hello
 Hello
 Hello
 Hello
. %/output

The second version of Repeat() does not take any arguments and it is designed to
run as an infinite loop. The Break() procedure is then used to make the
Repeat() procedure stop looping. The following program would print the loop
indexing variable index forever, but the Break() procedure is used to stop the
loop after 3 iterations:

%mathpiper

index := 1;

loopCount := Repeat()
{
 Echo(index);

 If(index =? 3) Break();

 index := (index + 1);
}

3910
3911
3912

3913
3914
3915
3916
3917
3918
3919
3920

3921
3922
3923
3924
3925
3926
3927
3928
3929

3930
3931
3932
3933
3934

3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947

v.158 - 07/12/17 Introduction To Programming With MathPiper 133/136

Echo("Loop count: ", loopCount);

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 1
 2
 3
 Loop count: 2
. %/output

Notice that Repeat() returns the number of times it actually looped as a result
and that this value is assigned to the variable loopCount.

19.1.7 The EchoTime() Procedure

Computers are extremely fast, but they still take time to execute programs.
Sometimes it is important to determine how long it takes to evaluate a given
expression in order to do things like determine if a section of code need to run
quicker than it currently is or determine if one piece of code is slower than
another. The EchoTime() procedure is a bodied procedure that is used to time
how long a section of code takes to run. Here is its calling format:

EchoTime()expression

The following examples use EchoTime() to determine how long it takes to add the
numbers 2 and 3 together and how long it takes to factor 1234567:

In> EchoTime() 2 + 3
Result: 5
Side Effects:
0.000080946 seconds taken.

In> EchoTime() Factor(1234567)
Result: 127*9721
Side Effects:
0.395028773 seconds taken.

In the following program, a ForEach loop is used to have the Factor() procedure
factor all the numbers in a list. The EchoTime() procedure is used to determine
how long it takes to do all the factoring:

3948
3949
3950

3951
3952
3953
3954
3955
3956
3957
3958
3959

3960
3961

3962

3963
3964
3965
3966
3967
3968

3969
3970

3971
3972
3973
3974

3975
3976
3977
3978

3979
3980
3981

v.158 - 07/12/17 Introduction To Programming With MathPiper 134/136

%mathpiper

EchoTime() ForEach(number, [100,54,65,67,344,98,454])
{

 Echo(number, " - ", Factor(number));
}

%/mathpiper

 %output,preserve="false"
 Result: True

 Side Effects:
 100 - 2^2*5^2
 54 - 2*3^3
 65 - 5*13
 67 - 67
 344 - 2^3*43
 98 - 2*7^2
 454 - 2*227
 0.262678978 seconds taken.
. %/output

Finally, the following program shows how to time a code sequence that prints the
numbers from 1 to 100:

%mathpiper

EchoTime()
{
 index := 1;

 While(index <=? 100)
 {
 Write(index,',);

 If(index % 10 =? 0) NewLine();

 index++;
 }

 NewLine();
}

%/mathpiper

 %output,preserve="false"
 Result: True

3982
3983
3984
3985

3986
3987
3988
3989

3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002

4003
4004

4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021

4022

4023
4024
4025

v.158 - 07/12/17 Introduction To Programming With MathPiper 135/136

 Side Effects:
 1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20,
 21,22,23,24,25,26,27,28,29,30,
 31,32,33,34,35,36,37,38,39,40,
 41,42,43,44,45,46,47,48,49,50,
 51,52,53,54,55,56,57,58,59,60,
 61,62,63,64,65,66,67,68,69,70,
 71,72,73,74,75,76,77,78,79,80,
 81,82,83,84,85,86,87,88,89,90,
 91,92,93,94,95,96,97,98,99,100,

 0.055418423 seconds taken.
. %/output

19.2 Exercises

For the following exercises, create a new MathPiperIDE worksheet file called
book_1_section_19_exercises_<your first name>_<your last name>.mpws.
(Note: there are no spaces in this file name). For example, John Smith's
worksheet would be called:

book_1_section_19_exercises_john_smith.mpws.

After this worksheet has been created, place your answer for each exercise that
requires a fold into its own fold in this worksheet. Place a title attribute in the
start tag of each fold that indicates the exercise the fold contains the solution to.
The folds you create should look similar to this one:

%mathpiper,title="Exercise 1"

//Sample fold.

%/mathpiper

If an exercise uses the MathPiper console instead of a fold, copy the work you
did in the console into a text file so it can be saved.

19.2.1 Exercise 1
Create a program that uses a While loop to display the numbers from 1 to
50. Use the ++ operator to increment the loop index variable.

19.2.2 Exercise 2
Create a program that uses a While loop to display the numbers from 1 to 50
in reverse order. Use the -- operator to decrement the loop index
variable.

4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039

4040

4041
4042
4043
4044

4045

4046
4047
4048
4049

4050

4051

4052

4053
4054

4055

4056
4057

4058

4059
4060
4061

v.158 - 07/12/17 Introduction To Programming With MathPiper 136/136

19.2.3 Exercise 3
Create a program that uses a Continue() procedure to cause a While loop
that is configured to print the numbers from 1 to 100 to skip printing the
number 72.

19.2.4 Exercise 4
Create a program that uses the version of the Repeat() procedure that takes
an integer as an argument and the + string concatenation operator to print
the following:

Hello
HelloHello
HelloHelloHello
HelloHelloHelloHello
HelloHelloHelloHelloHello

Hint:

In> string := "Hi"
Result: "Hi"

In> string := string + "Hi"
Result: "HiHi"

19.2.5 Exercise 5
In the last example in the EchoTime() section, what operator is being used
to format the output into lines of 10 numbers and how is this operator
doing this?

4062

4063
4064
4065

4066

4067
4068
4069

4070
4071
4072
4073
4074

4075

4076
4077

4078
4079

4080

4081
4082
4083

	1 Preface
	1.1 Dedication
	1.2 Website And Support Email List
	1.3 Recommended Weekly Sequence When Teaching A Class With This Book

	2 Introduction
	2.1 What Is A Mathematics Computing Environment?
	2.2 What Is MathPiperIDE?
	2.3 What Inspired The Creation Of MathPiperIDE?

	3 Downloading, Installing, And Executing MathPiperIDE
	3.1 MathPiperIDE's Directory Structure

	4 The Graphical User Interface
	4.1 Buffers And Text Areas
	4.2 The Gutter
	4.3 Menus
	4.3.1 File
	4.3.2 Edit
	4.3.3 Search
	4.3.4 Markers, Folding, and View
	4.3.5 Utilities
	4.3.6 Macros
	4.3.7 Plugins
	4.3.8 Help

	4.4 The Toolbar
	4.4.1 Undo And Redo

	5 Using MathPiperIDE As A Programmer's Text Editor
	5.1 Creating, Opening, Saving, And Closing Text Files
	5.2 Editing Files
	5.3 File Modes
	5.4 Learning How To Type Properly Is An Excellent Investment Of Your Time
	5.5 Exercises
	5.5.1 Exercise 1

	6 MathPiper: A Computer Algebra System For Beginners
	6.1 Numeric Vs. Symbolic Computations
	6.2 Using The MathPiper Console As A Numeric (Scientific) Calculator
	6.2.1 Using Procedures
	6.2.1.1 The Sqrt() Square Root Procedure
	6.2.1.2 The Even?() Procedure

	6.2.2 Accessing Previous Input And Results

	6.3 Saving And Restoring A Console Session
	6.3.1 Syntax Errors

	6.4 Using The MathPiper Console As A Symbolic Calculator
	6.4.1 Variables And The Variable State
	6.4.1.1 The Global Variable State
	6.4.1.2 Evaluating An Unassigned Variable Throws An Exception
	6.4.1.3 Constants
	6.4.1.4 Calculating With Constants
	6.4.1.5 Variable And Constant Names Are Case Sensitive
	6.4.1.6 Using More Than One Variable

	6.5 Exercises
	6.5.1 Exercise 1
	6.5.2 Exercise 2
	6.5.3 Exercise 3
	6.5.4 Exercise 4

	7 The MathPiper Documentation Plugin
	7.1 Procedure List
	7.2 Mini Web Browser Interface
	7.3 Exercises
	7.3.1 Exercise 1
	7.3.2 Exercise 2

	8 MathPiperIDE Worksheet Files
	8.1 Code Folds And Source Code
	8.1.1 The title Attribute

	8.2 Automatically Inserting Folds & Removing Unpreserved Folds
	8.3 Placing Text Outside Of A Fold
	8.4 Rectangular Selection Mode And Text Area Splitting
	8.4.1 Rectangular Selection Mode
	8.4.2 Text area splitting
	8.4.3 Exercises
	8.4.3.1 Exercise 1
	8.4.3.2 Exercise 2
	8.4.3.3 Exercise 3
	8.4.3.4 Exercise 4

	9 MathPiper Programming Fundamentals
	9.1 Values, Literals, And Expressions
	9.2 Operators
	9.3 Operator Precedence
	9.4 Changing The Order Of Operations In An Expression
	9.5 Procedures & Procedure Names
	9.6 Procedures That Produce Side Effects
	9.6.1 Printing Related Procedures: Echo(), Write(), And Newline()
	9.6.1.1 The Echo() Procedure
	9.6.1.2 Echo Procedures Are Useful For "Debugging" Programs
	9.6.1.3 Write()
	9.6.1.4 NewLine()

	9.7 Expressions Are Separated By Semicolons
	9.7.1 Placing More Than One Expression On A Line In A Fold
	9.7.2 Placing Consecutive Expressions Into A Code Sequence
	9.7.2.1 Automatic Bracket, Parentheses, And Brace Match Indicating

	9.8 Strings
	9.8.1 The MathPiper Console and MathPiper Folds Can Access The Same Variables
	9.8.2 Using Strings To Make Echo's Output Easier To Read
	9.8.2.1 Combining Strings With The + Operator
	9.8.2.2 WriteString()
	9.8.2.3 Nl()
	9.8.2.4 Space()

	9.8.3 Accessing The Individual Letters/Characters In A String
	9.8.3.1 Indexing Before The Beginning Of A String Or Past The End Of A String

	9.9 Comments
	9.10 How To Tell If MathPiper Has Crashed And What To Do If It Has
	9.11 Exercises
	9.11.1 Exercise 1
	9.11.2 Exercise 2
	9.11.3 Exercise 3
	9.11.4 Exercise 4
	9.11.5 Exercise 5
	9.11.6 Exercise 6

	10 Lists
	10.1 Append!()

	11 Random Integer Values
	11.1 Obtaining Random Integers With The RandomInteger() Procedure
	11.2 Simulating The Rolling Of Dice
	11.3 Exercises
	11.3.1 Exercise 1

	12 Making Decisions
	12.1 Relational Operators
	12.2 Predicate Expressions
	12.3 Exercises
	12.3.1 Exercise 1
	12.3.2 Exercise 2

	12.4 Making Decisions With The If() Procedure & Predicate Expressions
	12.4.1 One If() Procedure Used With One Else Operator

	12.5 The &?, |?, And !? Boolean Operators
	12.5.1 The &? "And" Operator
	12.5.2 The |? "Or" Operator
	12.5.3 The !? "Not" Operator

	12.6 Exercises
	12.6.1 Exercise 1
	12.6.2 Exercise 2
	12.6.3 Exercise 3

	13 The While() And Until() Looping Procedures
	13.1 The While() Looping Procedure
	13.1.1 Printing The Integers From 1 to 10
	13.1.2 Placing The Integers From 1 to 50 In A List
	13.1.3 Printing The Odd Integers From 1 To 99
	13.1.4 Placing The Integers From 1 To 100 In Reverse Order Into A List

	13.2 The Until() Looping Procedure
	13.2.1 Printing The Integers From 1 to 10

	13.3 Expressions Inside Of Code Sequences Are Indented
	13.4 Long-Running Loops, Infinite Loops, & Interrupting Execution
	13.5 A Program That Simulates Rolling Two Dice 50 Times
	13.6 Exercises
	13.6.1 Exercise 1
	13.6.2 Exercise 2
	13.6.3 Exercise 3

	14 Predicate Procedures
	14.1 Finding Prime Numbers With A Loop
	14.2 Finding The Length Of A String With The Length() Procedure
	14.3 Converting Numbers To Strings With The ToString() Procedure
	14.4 Finding Prime Numbers that End With 7 (And Multi-line Procedure Calls)
	14.5 Exercises
	14.5.1 Exercise 1
	14.5.2 Exercise 2

	15 More Applications Of Using While Loops With Lists
	15.1 Adding 1 To Each Element In A List
	15.2 Determining If A Number Is In A List
	15.3 Finding The Sum Of The Integers In A List Using A While Loop
	15.4 Exercises
	15.4.1 Exercise 1
	15.4.2 Exercise 2
	15.4.3 Exercise 3

	15.5 The ForEach() Looping Procedure
	15.6 Print All The Values In A List Using A ForEach() procedure
	15.7 Calculate The Sum Of The Numbers In A List Using ForEach()
	15.8 The .. Range Operator
	15.9 Using ForEach() With The Range Operator To Print The Prime Numbers Between 1 And 100
	15.9.1 Using ForEach() And The Range Operator To Place The Prime Numbers Between 1 And 50 Into A List
	15.9.2 Exercises
	15.9.3 Exercise 1
	15.9.4 Exercise 2
	15.9.5 Exercise 3
	15.9.6 Exercise 4

	16 Procedures & Operators That Loop Internally
	16.1 Procedures & Operators That Loop Internally To Process Lists
	16.1.1 TableForm()
	16.1.2 Contains?()
	16.1.3 Find()
	16.1.4 Count()
	16.1.5 Select()
	16.1.6 The Nth() Procedure & The [] Operator
	16.1.7 Concat()
	16.1.8 Insert(), Delete(), & Replace()
	16.1.9 Take()
	16.1.10 Drop()
	16.1.11 FillList()
	16.1.12 RemoveDuplicates()
	16.1.13 Reverse()
	16.1.14 Partition()
	16.1.15 BuildList()
	16.1.16 Sort()

	16.2 Procedures That Work With Integers
	16.2.1 RandomIntegerList()
	16.2.2 Maximum() & Minimum()
	16.2.3 Quotient() & Modulo()
	16.2.4 Gcd()
	16.2.5 Lcm()
	16.2.6 Sum()
	16.2.7 Product()

	16.3 Exercises
	16.3.1 Exercise 1
	16.3.2 Exercise 2
	16.3.3 Exercise 3
	16.3.4 Exercise 4
	16.3.5 Exercise 5

	17 Nested Loops
	17.1 Generate All The Combinations That Can Be Entered Into A Two Digit Wheel Lock Using A Nested Loop
	17.2 Exercises
	17.2.1 Exercise 1

	18 User Defined Procedures
	18.1 Global Variables, Local Variables, & Local()
	18.2 Exercises
	18.2.1 Exercise 1
	18.2.2 Exercise 2

	19 Miscellaneous topics
	19.1 Incrementing And Decrementing Variables With The ++ And -- Operators
	19.1.1 Incrementing Variables With The ++ Operator
	19.1.2 Decrementing Variables With The -- Operator
	19.1.3 The For() Looping Procedure
	19.1.4 The Break() Procedure
	19.1.5 The Continue() Procedure
	19.1.6 The Repeat() Looping Procedure
	19.1.7 The EchoTime() Procedure

	19.2 Exercises
	19.2.1 Exercise 1
	19.2.2 Exercise 2
	19.2.3 Exercise 3
	19.2.4 Exercise 4
	19.2.5 Exercise 5

